Biomarker evaluation under imperfect nested case‐control design

估计员 重采样 计算机科学 维数之咒 加权 稳健性(进化) 统计 采样(信号处理) 数学 算法 机器学习 医学 生物化学 化学 滤波器(信号处理) 基因 计算机视觉 放射科
作者
Xuan Wang,Yingye Zheng,Majken K. Jensen,Zhe He,Tianxi Cai
出处
期刊:Statistics in Medicine [Wiley]
卷期号:40 (18): 4035-4052 被引量:1
标识
DOI:10.1002/sim.9012
摘要

Summary The nested case‐control (NCC) design has been widely adopted as a cost‐effective sampling design for biomarker research. Under the NCC design, markers are only measured for the NCC subcohort consisting of all cases and a fraction of the controls selected randomly from the matched risk sets of the cases. Robust methods for evaluating prediction performance of risk models have been derived under the inverse probability weighting framework. The probabilities of samples being included in the NCC cohort can be calculated based on the study design ``a previous study'' or estimated non‐parametrically ``a previous study''. Neither strategy works well due to model mis‐specification and the curse of dimensionality in practical settings where the sampling does not entirely follow the study design or depends on many factors. In this paper, we propose an alternative strategy to estimate the sampling probabilities based on a varying coefficient model, which attains a balance between robustness and the curse of dimensionality. The complex correlation structure induced by repeated finite risk set sampling makes the standard resampling procedure for variance estimation fail. We propose a perturbation resampling procedure that provides valid interval estimation for the proposed estimators. Simulation studies show that the proposed method performs well in finite samples. We apply the proposed method to the Nurses' Health Study II to develop and evaluate prediction models using clinical biomarkers for cardiovascular risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex完成签到,获得积分10
刚刚
1秒前
所所应助闪闪雁采纳,获得10
1秒前
1秒前
刺1656完成签到,获得积分10
2秒前
2秒前
所所应助优秀真采纳,获得10
2秒前
迟迟发布了新的文献求助10
2秒前
NexusExplorer应助Azheng采纳,获得10
3秒前
sxpab发布了新的文献求助10
3秒前
凌发发布了新的文献求助10
3秒前
3秒前
就这发布了新的文献求助10
3秒前
lee完成签到,获得积分10
4秒前
4秒前
zbs发布了新的文献求助10
4秒前
4秒前
852应助北越城主采纳,获得30
4秒前
小不遛w完成签到,获得积分10
5秒前
organicboy完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
xinyu完成签到,获得积分10
6秒前
干嘛完成签到 ,获得积分20
7秒前
超越一切完成签到,获得积分10
7秒前
7秒前
7秒前
无花果应助东北采纳,获得10
7秒前
8秒前
巴旦木发布了新的文献求助10
8秒前
静仰星空完成签到,获得积分10
9秒前
9秒前
田様应助小景毕业采纳,获得10
9秒前
浮游应助科研通管家采纳,获得30
9秒前
wxnice发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
优美紫槐应助科研通管家采纳,获得10
9秒前
lxp完成签到,获得积分10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297