Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review

分类 分类 比例(比率) 钥匙(锁) 计算机科学 排序算法 工程类 运筹学 工业工程 风险分析(工程) 业务 算法 情报检索 计算机安全 量子力学 物理
作者
Xin Lai,Yunfeng Huang,Cong Deng,Huanghui Gu,Xuebing Han,Yuejiu Zheng,Minggao Ouyang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:146: 111162-111162 被引量:142
标识
DOI:10.1016/j.rser.2021.111162
摘要

With the rapid development of electric vehicles, the safe and environmentally friendly disposal of retired lithium batteries (LIBs) is becoming a serious issue. Echelon utilization of the retired LIBs is a promising scheme because of its considerable potential for generating economic and environmental value. The most outstanding technical challenge of echelon utilization is how to sort and regroup the large-scale retired LIBs efficiently and accurately. In this paper, the status and challenges of echelon utilization for the retired LIBs are reviewed. First, the criteria, policies, regulations, markets, costs, and values of echelon utilization are summarized comprehensively to illustrate its potential and expose existing problems and pain points. Second, the key technologies related to large-scale echelon utilization of LIBs are detailed; valuable opinions and technical routes are presented for the selection and rapid estimation of sorting indices, the classification and regrouping algorithm, evaluation of the sorting results, and other aspects. In particular, a multilevel and multidimensional fast sorting method is proposed for large-scale echelon utilization of retired LIBs that considers different scenario constraints. Valuable solutions to the key technical problems are given, such as predicting the characteristics of retired LIBs with in-service data and building a fast sorting model from a small number of samples to sort large quantities of LIBs. Finally, the technological prospects of echelon utilization are discussed. Big data and artificial intelligence can be used to promote further development and application of echelon utilization, which may eventually be applied to managing the whole life cycle of LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wendy完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
清欢发布了新的文献求助10
1秒前
sdh发布了新的文献求助10
2秒前
2秒前
呆萌的心情完成签到,获得积分10
3秒前
板凳发布了新的文献求助10
3秒前
张牧之完成签到 ,获得积分10
4秒前
4秒前
乐乐应助犹豫嚣采纳,获得10
4秒前
5秒前
5秒前
天天快乐应助朴素的晓灵采纳,获得10
6秒前
细心的语蓉应助元谷雪采纳,获得30
6秒前
dupeipei发布了新的文献求助10
8秒前
8秒前
Jenny712完成签到 ,获得积分10
8秒前
YH发布了新的文献求助10
10秒前
wanci应助苏苏采纳,获得10
11秒前
xx-xxx发布了新的文献求助10
11秒前
11秒前
搜集达人应助科研小白采纳,获得10
12秒前
共享精神应助XFX想有钱采纳,获得10
12秒前
Solitude_Z完成签到,获得积分20
12秒前
zs完成签到 ,获得积分10
12秒前
潘潘完成签到 ,获得积分10
13秒前
18340312141完成签到,获得积分10
14秒前
syyyao完成签到,获得积分10
14秒前
15秒前
上官若男应助好好采纳,获得10
16秒前
16秒前
Mandy发布了新的文献求助10
16秒前
汉堡包应助xx-xxx采纳,获得10
17秒前
麻呢呢发布了新的文献求助10
18秒前
Singularity应助Solitude_Z采纳,获得10
18秒前
ding应助Solitude_Z采纳,获得10
19秒前
19秒前
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299726
求助须知:如何正确求助?哪些是违规求助? 2934627
关于积分的说明 8469883
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424065
科研通“疑难数据库(出版商)”最低求助积分说明 661818
邀请新用户注册赠送积分活动 645574