阅读(过程)
计算机科学
自然语言处理
理解力
人工智能
阅读理解
语言学
情报检索
程序设计语言
哲学
作者
Jun Cao,Xian Zhou,Wangping Xiong,Ming Yang,Jianqiang Du,Yanyun Yang,Tianci Li
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ
日期:2021-01-01
被引量:1
摘要
The entity recognition of Chinese electronic medical record is of great significance to medical decision-making. The main process of entity recognition is sequence tagging, which has problems such as nested entity and boundary prediction. In this paper, we proposed a NER method called Bert-MRC-Biaffine, which formulates the NER as an MRC task. The approach of the machine reading comprehension framework is to introduce prior knowledge, the query about entities. The biaffine mechanism scores pair start and end tokens in a sentence so that the model is able to predict named entities accurately. The proposed method outperforms from the electronic medical record dataset, called CCKS2017 data, and the TCM dataset. We also remove components to evaluate the contribution of individual components of our model. Experiments on two datasets demonstrate the effectiveness of our model.
科研通智能强力驱动
Strongly Powered by AbleSci AI