Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI

支持向量机 磁共振成像 冲程(发动机) 人工智能 计算机科学 逻辑回归 核(代数) 医学 机器学习 转化(遗传学) 人工神经网络 深度学习 回归 模式识别(心理学) 放射科 统计 数学 工程类 化学 组合数学 基因 机械工程 生物化学
作者
Yannan Yu,Danfeng Guo,Min Lou,David S. Liebeskind,Fabien Scalzo
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:65 (9): 2058-2065 被引量:77
标识
DOI:10.1109/tbme.2017.2783241
摘要

Hemorrhagic transformation (HT) is the most severe complication of reperfusion therapy in acute ischemic stroke (AIS) patients. Management of AIS patients could benefit from accurate prediction of upcoming HT. While prediction of HT occurrence has recently provided encouraging results, the prediction of the severity and territory of the HT could bring valuable insights that are beyond current methods.This study tackles these issues and aims to predict the spatial occurrence of HT in AIS from perfusion-weighted magnetic resonance imaging (PWI) combined with diffusion weighted imaging. In all, 165 patients were included in this study and analyzed retrospectively from a cohort of AIS patients treated with reperfusion therapy in a single stroke center.Machine learning models are compared within our framework; support vector machines, linear regression, decision trees, neural networks, and kernel spectral regression were applied to the dataset. Kernel spectral regression performed best with an accuracy of $\text{83.7} \pm \text{2.6}\%$.The key contribution of our framework formalize HT prediction as a machine learning problem. Specifically, the model learns to extract imaging markers of HT directly from source PWI images rather than from pre-established metrics.Predictions visualized in terms of spatial likelihood of HT in various territories of the brain were evaluated against follow-up gradient recalled echo and provide novel insights for neurointerventionalists prior to endovascular therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拾星完成签到 ,获得积分10
3秒前
谢谢完成签到,获得积分10
3秒前
Winkhl发布了新的文献求助10
4秒前
光亮友安发布了新的文献求助10
4秒前
我我我我哦我玩完成签到,获得积分10
4秒前
Fengkai_CHEN完成签到,获得积分0
4秒前
有一个盆完成签到,获得积分10
4秒前
旺阿旺发布了新的文献求助10
4秒前
momi完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
CipherSage应助油菜籽采纳,获得10
6秒前
香蕉觅云应助utopia采纳,获得10
6秒前
6秒前
桐桐应助苹果邪欢采纳,获得10
6秒前
SciGPT应助graham1101采纳,获得10
7秒前
始于足下完成签到,获得积分10
7秒前
蛇蛇王子完成签到,获得积分10
8秒前
光影完成签到,获得积分10
8秒前
8秒前
LILI2完成签到,获得积分20
8秒前
CodeCraft应助xiaozhang采纳,获得10
8秒前
9秒前
iridium发布了新的文献求助10
9秒前
10秒前
Xx发布了新的文献求助10
11秒前
gjm完成签到,获得积分10
11秒前
斯文白白发布了新的文献求助10
11秒前
凶狠的谷蓝完成签到,获得积分10
11秒前
研友_kngjrL完成签到,获得积分10
12秒前
12秒前
今后应助qiaoxin采纳,获得10
13秒前
GUIGUI发布了新的文献求助10
13秒前
李舜达完成签到,获得积分10
14秒前
14秒前
xx完成签到,获得积分10
14秒前
14秒前
旺阿旺完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680