亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI

支持向量机 磁共振成像 冲程(发动机) 人工智能 计算机科学 逻辑回归 核(代数) 医学 机器学习 转化(遗传学) 人工神经网络 深度学习 回归 模式识别(心理学) 放射科 统计 数学 工程类 组合数学 基因 机械工程 化学 生物化学
作者
Yannan Yu,Danfeng Guo,Min Lou,David S. Liebeskind,Fabien Scalzo
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:65 (9): 2058-2065 被引量:77
标识
DOI:10.1109/tbme.2017.2783241
摘要

Hemorrhagic transformation (HT) is the most severe complication of reperfusion therapy in acute ischemic stroke (AIS) patients. Management of AIS patients could benefit from accurate prediction of upcoming HT. While prediction of HT occurrence has recently provided encouraging results, the prediction of the severity and territory of the HT could bring valuable insights that are beyond current methods.This study tackles these issues and aims to predict the spatial occurrence of HT in AIS from perfusion-weighted magnetic resonance imaging (PWI) combined with diffusion weighted imaging. In all, 165 patients were included in this study and analyzed retrospectively from a cohort of AIS patients treated with reperfusion therapy in a single stroke center.Machine learning models are compared within our framework; support vector machines, linear regression, decision trees, neural networks, and kernel spectral regression were applied to the dataset. Kernel spectral regression performed best with an accuracy of $\text{83.7} \pm \text{2.6}\%$.The key contribution of our framework formalize HT prediction as a machine learning problem. Specifically, the model learns to extract imaging markers of HT directly from source PWI images rather than from pre-established metrics.Predictions visualized in terms of spatial likelihood of HT in various territories of the brain were evaluated against follow-up gradient recalled echo and provide novel insights for neurointerventionalists prior to endovascular therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOKL完成签到,获得积分10
5秒前
wanci应助我能读懂文献采纳,获得10
6秒前
7秒前
花凉完成签到,获得积分10
11秒前
12秒前
自由怀梦完成签到,获得积分10
12秒前
花凉发布了新的文献求助10
13秒前
24秒前
念辰发布了新的文献求助10
28秒前
30秒前
32秒前
banbieshenlu完成签到,获得积分10
32秒前
懒洋洋发布了新的文献求助10
37秒前
yq发布了新的文献求助30
45秒前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
有趣的银发布了新的文献求助10
1分钟前
念辰关注了科研通微信公众号
1分钟前
1分钟前
阿芙乐尔发布了新的文献求助10
1分钟前
yiban完成签到 ,获得积分10
2分钟前
2分钟前
zyj发布了新的文献求助10
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助zyj采纳,获得10
2分钟前
uto完成签到,获得积分10
2分钟前
3分钟前
vicky发布了新的文献求助10
3分钟前
懒洋洋发布了新的文献求助10
3分钟前
3分钟前
耶风完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223