Combination of TNM staging and pathway based risk score models in patients with gastric cancer

放化疗 阶段(地层学) 医学 肿瘤科 内科学 癌症 基因签名 比例危险模型 TNM分期系统 基因 登台系统 生物 基因表达 生物化学 古生物学
作者
Yangyang Zhou,Young Lynn Kang,Chao Chen,Fei Xu,Haonan Wang,Rong Jin
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:119 (4): 3608-3617 被引量:27
标识
DOI:10.1002/jcb.26563
摘要

Due to the complexity and heterogeneity of gastric cancer (GC) in individual patient, current staging system is inadequate for predicting outcome of GC. Comprehensive computational and bioinformatics approach may triumph for the prediction. In this study, GC patients were devided according to stage and treatment: curative surgery plus chemoradiotherapy in stage II, curative surgery plus chemoradiotherapy in stages III, and IV, unresectable metastatic gastric cancer. The training sets were downloaded from GEO datasets (GSE26253 and GSE14208). Gene set enrichment analysis (GSEA) was performed to explore enriched difference between recurrence and nonrecurrence. The core enrichment genes of enriched pathways significantly associated with recurrence or progression were identified using Cox proportional hazards analysis. Thereafter, the risk score models were externally validated in independent datasets-GSE15081 and The Cancer Genome Atlas (TCGA). We generated respective risk score models of patients in different stages and treatment. A five-gene signature comprising FARP1, SGCE, SGCA, LAMA4, and COL9A2 was strongly associated with recurrence of patients with curative surgery plus chemoradiotherapy in stage II. A six-gene signature consisting of SHH, NF1, AP4B1, COMP, MATN3, and CCL8 was correlated with recurrence of patients with curative surgery plus chemoradiotherapy in stages III and IV. And a four-gene signature composing of ABCC2, AHNAK2, RNF43, and GSPT2 was highly related to progression of patients with unresectable metastatic GC. Taking into consideration TNM stage and gene signature reflecting recurrence or progression, the risk score models significantly improved the accuracy in predicting outcome of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到,获得积分10
1秒前
ww发布了新的文献求助10
1秒前
欣慰的寒烟完成签到,获得积分10
1秒前
2秒前
赘婿应助流光采纳,获得10
3秒前
秋qiu发布了新的文献求助10
3秒前
3秒前
4秒前
杨涵完成签到,获得积分10
4秒前
风筝有风发布了新的文献求助10
4秒前
Christina完成签到,获得积分10
4秒前
吴建洺完成签到,获得积分10
4秒前
5秒前
笨笨猪完成签到,获得积分10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
慕青应助南湖秋水采纳,获得10
7秒前
JamesPei应助weisuonan101采纳,获得10
7秒前
搜集达人应助guo采纳,获得10
7秒前
研友_8DrBkn发布了新的文献求助10
8秒前
和平使命应助zhiweiyan采纳,获得10
8秒前
8秒前
CrazyRichard发布了新的文献求助10
9秒前
9秒前
zoro完成签到,获得积分20
9秒前
9秒前
英姑应助王算法采纳,获得10
9秒前
Carl发布了新的文献求助10
10秒前
li发布了新的文献求助10
11秒前
xima完成签到,获得积分10
12秒前
12秒前
健壮的思枫完成签到,获得积分10
12秒前
13秒前
刘妮妮发布了新的文献求助10
14秒前
在水一方应助酸奶泡泡采纳,获得10
14秒前
14秒前
CL完成签到 ,获得积分10
16秒前
16秒前
忧郁绣连完成签到,获得积分10
16秒前
丸子发布了新的文献求助10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234