已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy

前列腺癌 医学 泌尿生殖系统 放射治疗 肿瘤科 单核苷酸多态性 毒性 前列腺 内科学 生物信息学 癌症 生物 基因型 遗传学 基因
作者
Sangkyu Lee,Sarah L. Kerns,Harry Ostrer,Barry S. Rosenstein,Joseph O. Deasy,Jung Hun Oh
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:101 (1): 128-135 被引量:75
标识
DOI:10.1016/j.ijrobp.2018.01.054
摘要

Purpose Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). Methods and Materials We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. Results The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. Conclusions We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity. Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助机智的山晴采纳,获得10
刚刚
刚刚
大个应助熊有鹏采纳,获得10
1秒前
希望天下0贩的0应助shinble采纳,获得10
3秒前
3秒前
3秒前
可爱的函函应助鲤鱼涔雨采纳,获得10
3秒前
4秒前
shinn发布了新的文献求助50
6秒前
斯文败类应助YC采纳,获得10
7秒前
dtf完成签到,获得积分10
7秒前
丢手绢完成签到,获得积分10
7秒前
8秒前
HY完成签到,获得积分10
9秒前
舒服的美女完成签到,获得积分10
9秒前
qikkk应助anasy采纳,获得10
10秒前
vagary完成签到,获得积分10
10秒前
糯米饭发布了新的文献求助30
10秒前
10秒前
12秒前
Rondab应助qsxy采纳,获得10
12秒前
天天下雨完成签到 ,获得积分10
13秒前
uuuuu发布了新的文献求助10
14秒前
Deng完成签到,获得积分10
15秒前
16秒前
Luke完成签到,获得积分10
18秒前
超级大帅比完成签到,获得积分10
19秒前
Elaine发布了新的文献求助10
19秒前
shinble发布了新的文献求助10
21秒前
24秒前
4114完成签到,获得积分10
24秒前
Lanyx发布了新的文献求助20
26秒前
26秒前
Elaine完成签到,获得积分10
27秒前
雨林霖发布了新的文献求助10
28秒前
29秒前
30秒前
31秒前
枕边人完成签到 ,获得积分10
32秒前
一只鲨呱发布了新的文献求助20
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602