已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy

前列腺癌 医学 泌尿生殖系统 放射治疗 肿瘤科 单核苷酸多态性 毒性 前列腺 内科学 生物信息学 癌症 生物 基因型 遗传学 基因
作者
Sangkyu Lee,Sarah L. Kerns,Harry Ostrer,Barry S. Rosenstein,Joseph O. Deasy,Jung Hun Oh
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:101 (1): 128-135 被引量:75
标识
DOI:10.1016/j.ijrobp.2018.01.054
摘要

Purpose Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). Methods and Materials We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. Results The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. Conclusions We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity. Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到,获得积分10
1秒前
老白茶发布了新的文献求助10
1秒前
Ava应助凉面采纳,获得10
1秒前
2秒前
林森发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
汉堡包应助林森采纳,获得10
6秒前
无花果应助王婷采纳,获得10
7秒前
欢喜寻双发布了新的文献求助10
8秒前
huanghuang发布了新的文献求助10
9秒前
顾健功发布了新的文献求助10
10秒前
11秒前
11秒前
浮游应助lingo采纳,获得10
12秒前
12秒前
FireNow发布了新的文献求助10
12秒前
YangHuilin关注了科研通微信公众号
12秒前
13秒前
科研通AI6应助lito采纳,获得10
14秒前
pl完成签到 ,获得积分10
14秒前
ggjjzz完成签到,获得积分10
15秒前
小马甲应助pan liu采纳,获得30
15秒前
百浪多息发布了新的文献求助10
17秒前
18秒前
18秒前
111发布了新的文献求助10
19秒前
22秒前
23秒前
23秒前
林森发布了新的文献求助10
24秒前
26秒前
薛薛发布了新的文献求助10
27秒前
kt完成签到,获得积分10
27秒前
YangHuilin发布了新的文献求助30
27秒前
彭于晏应助林森采纳,获得10
27秒前
科研通AI5应助阳光刺眼采纳,获得30
28秒前
充电宝应助ckl采纳,获得10
30秒前
浮游应助尤寄风采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197046
求助须知:如何正确求助?哪些是违规求助? 4378441
关于积分的说明 13636319
捐赠科研通 4234134
什么是DOI,文献DOI怎么找? 2322555
邀请新用户注册赠送积分活动 1320688
关于科研通互助平台的介绍 1271277