Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy

前列腺癌 医学 泌尿生殖系统 放射治疗 肿瘤科 单核苷酸多态性 毒性 前列腺 内科学 生物信息学 癌症 生物 基因型 遗传学 基因
作者
Sangkyu Lee,Sarah L. Kerns,Harry Ostrer,Barry S. Rosenstein,Joseph O. Deasy,Jung Hun Oh
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:101 (1): 128-135 被引量:75
标识
DOI:10.1016/j.ijrobp.2018.01.054
摘要

Purpose Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). Methods and Materials We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. Results The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. Conclusions We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity. Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Xue发布了新的文献求助10
4秒前
夏蓉发布了新的文献求助10
4秒前
lalala发布了新的文献求助10
5秒前
兜兜完成签到,获得积分10
5秒前
5秒前
6秒前
领导范儿应助汤mou采纳,获得10
6秒前
6秒前
科研通AI2S应助端碗吃饭采纳,获得10
7秒前
司马立果发布了新的文献求助20
9秒前
司空雨筠完成签到,获得积分10
9秒前
风中追风发布了新的文献求助10
9秒前
siyuwang1234发布了新的文献求助10
10秒前
念暖完成签到 ,获得积分10
10秒前
Orange应助Xue采纳,获得10
11秒前
11秒前
Hao完成签到,获得积分10
12秒前
大模型应助yange采纳,获得10
12秒前
14秒前
风中追风完成签到,获得积分10
15秒前
liZZZZZ完成签到,获得积分10
16秒前
menghuaxijie发布了新的文献求助10
16秒前
17秒前
JayWu完成签到,获得积分10
17秒前
马铃鼠完成签到,获得积分10
17秒前
欣慰土豆完成签到 ,获得积分0
18秒前
18秒前
自信夜蓉发布了新的文献求助10
18秒前
18秒前
星星应助留胡子的霖采纳,获得10
18秒前
云瑾应助Ren采纳,获得20
18秒前
强哥很强发布了新的文献求助10
19秒前
王八仙子发布了新的文献求助10
19秒前
19秒前
星辰大海应助程风破浪采纳,获得10
21秒前
21秒前
努力看文献的大头完成签到,获得积分10
22秒前
adoretheall发布了新的文献求助10
23秒前
lynn发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157798
求助须知:如何正确求助?哪些是违规求助? 2809143
关于积分的说明 7880515
捐赠科研通 2467613
什么是DOI,文献DOI怎么找? 1313602
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943