外体
微泡
细胞生物学
小泡
化学
人口
胞外囊泡
生物
膜
生物化学
基因
小RNA
社会学
人口学
作者
Haiying Zhang,Daniela Freitas,Han Sang Kim,Kristina Ivana Fabijanic,Zhong Li,Haiyan Chen,Milica Tešić Mark,Henrik Molina,Alberto Benito‐Martín,Linda Bojmar,Justin Fang,Sham Rampersaud,Ayuko Hoshino,Irina Matei,Candia M. Kenific,Miho Nakajima,Anders P. Mutvei,Pasquale Sansone,Weston Buehring,Huajuan Wang
标识
DOI:10.1038/s41556-018-0040-4
摘要
The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nm; small exosome vesicles, Exo-S, 60–80 nm) and discovered an abundant population of non-membranous nanoparticles termed ‘exomeres’ (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations. Lyden and colleagues use asymmetric flow field-flow fractionation to classify nanoparticles derived from cell lines and human samples, including previously uncharacterized large, Exo-L and small, Exo-S, exosome subsets.
科研通智能强力驱动
Strongly Powered by AbleSci AI