Species classification of individual fish using the support vector machine

S成员 渔业 支持向量机 回声测深 目标强度 鱼类多样性 鲭鱼 生物 计算机科学 人工智能 遥感 地质学
作者
Kinjo Atsushi,Masanori Ito,Ikuo Matsuo,Tomohito Imaizumi,Tomonari Akamatsu
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:136 (4_Supplement): 2155-2156
标识
DOI:10.1121/1.4899794
摘要

The fish species classification using echo-sounder is important for fisheries. In the case of fish school of mixed species, it is necessary to classify individual fish species by isolating echoes from multiple fish. A broadband signal, which offered the advantage of high range resolution, was applied to detect individual fish for this purpose. The positions of fish were estimated from the time difference of arrivals by using the split-beam system. The target strength (TS) spectrum of individual fish echo was computed from the isolated echo and the estimated position. In this paper, the Support Vector Machine was introduced to classify fish species by using these TS spectra. In addition, it is well known that the TS spectra are dependent on not only fish species but also fish size. Therefore, it is necessary to classify both fish species and size by using these features. We tried to classify two species and two sizes of schools. Subject species were chub mackerel (Scomber japonicas) and Japanese jack mackerel (Trachurus japonicus). We calculated the classification rates to limit the training data, frequency bandwidth and tilt angles. It was clarified that the best classification rate was 71.6 %. [This research was supported by JST, CREST.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助战神林北采纳,获得10
1秒前
1秒前
米酒发布了新的文献求助10
1秒前
2秒前
Da-ming发布了新的文献求助10
3秒前
朴实天曼完成签到 ,获得积分20
3秒前
外向衫发布了新的文献求助10
4秒前
4秒前
俊逸谷云完成签到,获得积分20
4秒前
张辉完成签到,获得积分10
4秒前
pathway发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
Lily0126发布了新的文献求助10
8秒前
小晖晖完成签到,获得积分10
9秒前
SciGPT应助自由青柏采纳,获得10
10秒前
俊逸谷云发布了新的文献求助10
10秒前
科研通AI2S应助黙宇循光采纳,获得10
10秒前
ZhengSyHoe发布了新的文献求助10
10秒前
cc2001发布了新的文献求助10
11秒前
爆米花应助专注学习采纳,获得10
13秒前
14秒前
单纯的手机完成签到,获得积分10
14秒前
15秒前
善学以致用应助aniing采纳,获得10
15秒前
迪达拉给迪达拉的求助进行了留言
15秒前
15秒前
旺旺碎碎冰完成签到,获得积分10
15秒前
16秒前
17秒前
slin_sjtu发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
小马甲应助Xander采纳,获得30
19秒前
19秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627