Species classification of individual fish using the support vector machine

S成员 渔业 支持向量机 回声测深 目标强度 鱼类多样性 鲭鱼 生物 计算机科学 人工智能 遥感 地质学
作者
Kinjo Atsushi,Masanori Ito,Ikuo Matsuo,Tomohito Imaizumi,Tomonari Akamatsu
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:136 (4_Supplement): 2155-2156
标识
DOI:10.1121/1.4899794
摘要

The fish species classification using echo-sounder is important for fisheries. In the case of fish school of mixed species, it is necessary to classify individual fish species by isolating echoes from multiple fish. A broadband signal, which offered the advantage of high range resolution, was applied to detect individual fish for this purpose. The positions of fish were estimated from the time difference of arrivals by using the split-beam system. The target strength (TS) spectrum of individual fish echo was computed from the isolated echo and the estimated position. In this paper, the Support Vector Machine was introduced to classify fish species by using these TS spectra. In addition, it is well known that the TS spectra are dependent on not only fish species but also fish size. Therefore, it is necessary to classify both fish species and size by using these features. We tried to classify two species and two sizes of schools. Subject species were chub mackerel (Scomber japonicas) and Japanese jack mackerel (Trachurus japonicus). We calculated the classification rates to limit the training data, frequency bandwidth and tilt angles. It was clarified that the best classification rate was 71.6 %. [This research was supported by JST, CREST.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
1秒前
平头完成签到 ,获得积分10
1秒前
1秒前
3秒前
科研通AI6应助秦长老采纳,获得50
4秒前
机灵书易完成签到,获得积分10
4秒前
ChaiHaobo发布了新的文献求助10
5秒前
lbyscu完成签到 ,获得积分10
6秒前
平淡远山完成签到,获得积分10
6秒前
张琳完成签到 ,获得积分10
7秒前
璩qu发布了新的文献求助10
7秒前
7秒前
xunuo完成签到,获得积分10
8秒前
8秒前
酷波er应助看鼠大好河山采纳,获得10
8秒前
toxin37完成签到 ,获得积分10
8秒前
泡泡完成签到,获得积分20
8秒前
xia发布了新的文献求助10
8秒前
NiLou完成签到,获得积分10
9秒前
10秒前
叶喜喜完成签到,获得积分10
10秒前
YiZT驳回了且慢应助
11秒前
11秒前
可乐完成签到 ,获得积分10
12秒前
feitian201861发布了新的文献求助10
12秒前
xunuo发布了新的文献求助10
12秒前
qu发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI6应助ChaiHaobo采纳,获得10
14秒前
Wuyx完成签到 ,获得积分10
14秒前
zzy发布了新的文献求助10
14秒前
15秒前
好看的花花鱼完成签到 ,获得积分10
15秒前
LG发布了新的文献求助10
15秒前
16秒前
怡然远望发布了新的文献求助10
17秒前
花陵发布了新的文献求助10
17秒前
琪琪关注了科研通微信公众号
18秒前
好眠哈密瓜完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091