摘要
Advanced MaterialsVolume 16, Issue 19 p. 1743-1746 Communication Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution† M. J. Siegfried, M. J. Siegfried Department of Chemistry, Purdue University, West Lafayette, IN 47907, USASearch for more papers by this authorK.-S. Choi, K.-S. Choi [email protected] Search for more papers by this author M. J. Siegfried, M. J. Siegfried Department of Chemistry, Purdue University, West Lafayette, IN 47907, USASearch for more papers by this authorK.-S. Choi, K.-S. Choi [email protected] Search for more papers by this author First published: 29 October 2004 https://doi.org/10.1002/adma.200400177Citations: 354 † This work made use of the Life Science Microscopy Facility at Purdue University. We thank Ms. Debbie Sherman for her help with the scanning electron microscope. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract The growth of Cu2O crystals that are electrochemically deposited as micrometer-size crystals with systematically varying fractions of {100} and {111} faces is reported (the Figure depicts cubic crystals). The methodical and homogeneous shape evolution is achieved by tuning the degree of preferential adsorption of sodium dodecyl sulfate on the {111} faces of growing Cu2O crystals through pH variation. Scale bar: 1 μm. REFERENCES 1 S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392. 2 J. H. Adair, E. Suvaci, Curr. Opin. Colloid Interface Sci. 2000, 5, 160. 3 Y. Sun, Y. Xia, Science 2002, 298, 2176. 4 C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, J. J. De Yoreo, Nature 2001, 411, 775. 5 L. Manna, E. C. Scher, A. P. Alivisatos, J. Cluster Sci. 2002, 13, 521. 6 J. W. Mullin, Crystallization, Butterworths, London 1971. 7 H. E. Buckley, Crystal Growth, Wiley, New York 1951. 8 E. Budevski, G. Staikov, W. J. Lorenz, in Electrochemical Phase Formation and Growth, VCH, New York 1996. 9 D.-L. Lu, K.-I. Tanaka, J. Electrochem. Soc. 1996, 143, 2105. 10 T. Yoshida, H. Minoura, Adv. Mater. 2000, 12, 1219. 11a Y. C. Zhou, J. A. Switzer, Mater. Res. Innovations 1998, 2, 22. 11b J. A. Switzer, H. M. Kothari, E. W. Bohannan, J. Phys. Chem. B 2002, 106, 4027. 12a R. Liu, E. W. Bohannan, J. A. Switzer, F. Oba, F. Ernst, Appl. Phys. Lett. 2003, 83, 1944. 12b R. Liu, F. Oba, E. W. Bohannan, F. Ernst, J. A. Switzer, Chem. Mater. 2003, 15, 4882. 13 J. A. Switzer, C.-J. Hung, L.-Y. Huang, E. R. Switzer, D. R. Kammler, T. D. Golden, E. W. Bohannan, J. Am. Chem. Soc. 1998, 120, 3530. 14 Z. L. Wang, J. Phys. Chem. B 2000, 104, 1153. 15 J.-F. Liu, W. A. Ducker, J. Phys. Chem. B 1999, 103, 8558. 16 Cu2O crystallizes in the space group Pn-3m (S. G.# 224). For this space group (h00) reflections with h ≠ 2n are systematically absent. 17 Below 40 °C co-deposition of Cu2O and Cu occurs, forming Cu/Cu2O composite films. 18 K. H. Schulz, D. F. Cox, J. Catal. 1993, 143, 464. 19 M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, Chem. Commun. 1998, 357. 20a P. E. de Jongh, D. Vanmaekelbergh, J. J. Kelly, Chem. Mater. 1999, 11, 3512. 20b P. E. de Jongh, D. Vanmaekelbergh, J. J. Kelly, Chem. Commun. 1999, 1069. 21 J.-M. Zen, Y.-S. Song, H.-H. Chung, C.-T. Hsu, A. S. Kumar, Anal. Chem. 2002, 74, 6126. 22 W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S.-H. Baeck, E. W. McFarland, Sol. Energy Mater. Sol. Cells 2003, 77, 229. Citing Literature Volume16, Issue19October, 2004Pages 1743-1746 ReferencesRelatedInformation