机械工程
过程(计算)
工程类
计算机科学
控制系统
作者
Marie Jonsson,Andreas Stolt,Anders Robertsson,Sebastian von Gegerfelt,Klas Nilsson
标识
DOI:10.1007/s11740-013-0459-1
摘要
Traditional industrial robots have problems interacting with an uncalibrated, ill-defined environment where part geometry and position may vary. Active force control technology has therefore been suggested as a solution to add the extra sensory dimension needed to handle manufacturing tasks like assembly and deburring. The technology is proposed to give increased flexibility compared to other solutions and force control systems are available commercially. Active force control installations, however, are still uncommon in industry. This paper presents two cases of force control applications; assembly of a compliant carbon fiber structure and deburring/cleaning of iron castings. Based on these two cases, some issues are raised concerning how the technology can be further developed to fit the industrial setting, and the proposed benefits are re-examined and refined. The two cases show that programming, parameter setting and ease of use are critical components in lowering the industrial threshold, together with increased possibilities for application-specific compensation and filtering. Force control does, however, show great potential in extending the boundaries for variance in product and equipment like grippers and fixtures as well as decreasing the need for calibration of for example virtual models used for programming compared to traditional automated solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI