超量积累植物
镍
植物
毛状体
化学
营养物
微量分析
开枪
水培
生物
环境化学
重金属
植物修复
有机化学
作者
Marta Marmiroli,Cristina Gonnelli,Elena Maestri,R. Gabbrielli,Nelson Marmiroli
标识
DOI:10.1080/11263500400011126
摘要
Plants of the nickel-hyperaccumulator Alyssum bertolonii Desv. and of the non-accumulator A. montanum L. growing on a serpentine site in Tuscany, Italy, and plants of A. montanum from a nearby non-serpentine site were analysed for metal concentration and localisation. The leaves of A. bertolonii contained 160 times more nickel than those of A. montanum from the same site, thus demonstrating its hyperaccumulation capacity towards this metal. On the other hand, both species showed an inversion of the Ca/Mg ratio in their organs relative to the soil. Nickel localisation in plant tissues was examined by Scanning Electron Microanalysis (SEM/EDX). In A. bertolonii, a specific pattern of nickel distribution was detected, with the highest concentrations present in parenchyma and sclerenchyma cells for the roots; in the shoots, the highest amounts of nickel were found in the stem epidermis, the leaf epidermal surface, and the leaf trichome base. This particular nickel tissue distribution pattern was not found in the non-accumulator A. montanum growing on serpentine soil. Other mineral nutrients, namely Mg, Ca, K, Fe, instead, had a similar distribution in the two species. The A. montanum plants from the non-serpentine site had very low nickel levels in their tissues, and these were of the same magnitude as those found in A. bertolonii plants grown in a greenhouse on commercial horticultural soil with low nickel concentration. In A. bertolonii plants, the tissue-specific allocation patterns appeared to depend on the degree of nickel hyperaccumulation, which is, in turn, directly linked to the soil characteristics.
科研通智能强力驱动
Strongly Powered by AbleSci AI