已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EGA-Net: Edge feature enhancement and global information attention network for RGB-D salient object detection

突出 特征(语言学) 人工智能 计算机科学 模式识别(心理学) GSM演进的增强数据速率 冗余(工程) 计算机视觉 语言学 操作系统 哲学
作者
Longsheng Wei,Guanyu Zong
出处
期刊:Information Sciences [Elsevier BV]
卷期号:626: 223-248 被引量:39
标识
DOI:10.1016/j.ins.2023.01.032
摘要

With the supplement of texture and geometry cues in depth maps, salient object detection (SOD) shifts from 2D to 3D, aiming to detect the most attractive object in a pair of color and depth images. Previous work primarily focused on regional integrity. Few methods are used to improve the edge quality of prediction results, resulting in a final prediction with a complete structure but blurred edges. Moreover, due to the complexity of real-life scenarios, the problem of effectively separating the salient object from complex background has become a hot potato. Aiming to address these issues, we propose a novel network, EGA-Net, to improve the edge quality and highlight the main features of the salient object. Specifically, in the EGA-Net, we propose a feature interaction (FI) module and an edge feature enhancement (EFE) module, respectively. Among them, the FI module is used to remove unimodal feature redundancy, capture multi-modal feature complementarity, and reduce the contamination of low-quality depth maps. The EFE is used to improve the edge quality of the final salient object prediction results. Furthermore, a Global Information Guide Integration (GIGI) module has been proposed to suppress the background noise and effectively highlight the salient objects' main features. It uses interleaving and fusion methods to automatically select and enhance the vital information in the original input features under the guidance of global features. We put the training of EGA-Net under the supervision of a new hybrid loss function that can simultaneously take global pixel point, foreground, and depth map quality into account. Quantitative and qualitative experiment results demonstrate that our method outperforms the 19 advanced methods on eight publicly available RGB-D salient object detection datasets with five evaluation metrics. You can find the code and results of our method athttps://github.com/guanyuzong/EGA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到,获得积分10
1秒前
LQX2141完成签到 ,获得积分10
2秒前
FashionBoy应助白樱恋曲采纳,获得10
3秒前
科研通AI2S应助西溪采纳,获得10
3秒前
5秒前
长之欠完成签到,获得积分10
6秒前
9秒前
SciGPT应助风里追兔采纳,获得10
10秒前
13秒前
13秒前
15秒前
damitang发布了新的文献求助30
18秒前
18秒前
Haimian完成签到,获得积分10
19秒前
20秒前
20秒前
聪明萤完成签到 ,获得积分10
20秒前
科目三应助linshaoyu采纳,获得10
20秒前
我我轻轻完成签到 ,获得积分10
22秒前
百事可乐可口完成签到,获得积分10
22秒前
wtt完成签到,获得积分10
22秒前
不摇碧莲完成签到 ,获得积分10
22秒前
风里追兔发布了新的文献求助10
23秒前
西溪发布了新的文献求助10
24秒前
24秒前
26秒前
小付发布了新的文献求助10
27秒前
大帅比完成签到 ,获得积分10
27秒前
搞怪不言完成签到,获得积分10
29秒前
风里追兔完成签到,获得积分10
29秒前
NexusExplorer应助沉静亦寒采纳,获得30
30秒前
快乐咖啡完成签到,获得积分10
30秒前
taotao完成签到,获得积分10
31秒前
32秒前
msn00完成签到 ,获得积分10
32秒前
CY发布了新的文献求助10
33秒前
懵懂的翠容完成签到,获得积分10
33秒前
xueqing发布了新的文献求助10
36秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172653
求助须知:如何正确求助?哪些是违规求助? 4362841
关于积分的说明 13584605
捐赠科研通 4210933
什么是DOI,文献DOI怎么找? 2309545
邀请新用户注册赠送积分活动 1308652
关于科研通互助平台的介绍 1255860