EGA-Net: Edge feature enhancement and global information attention network for RGB-D salient object detection

突出 特征(语言学) 人工智能 计算机科学 模式识别(心理学) GSM演进的增强数据速率 冗余(工程) 计算机视觉 语言学 操作系统 哲学
作者
Longsheng Wei,Guanyu Zong
出处
期刊:Information Sciences [Elsevier BV]
卷期号:626: 223-248 被引量:39
标识
DOI:10.1016/j.ins.2023.01.032
摘要

With the supplement of texture and geometry cues in depth maps, salient object detection (SOD) shifts from 2D to 3D, aiming to detect the most attractive object in a pair of color and depth images. Previous work primarily focused on regional integrity. Few methods are used to improve the edge quality of prediction results, resulting in a final prediction with a complete structure but blurred edges. Moreover, due to the complexity of real-life scenarios, the problem of effectively separating the salient object from complex background has become a hot potato. Aiming to address these issues, we propose a novel network, EGA-Net, to improve the edge quality and highlight the main features of the salient object. Specifically, in the EGA-Net, we propose a feature interaction (FI) module and an edge feature enhancement (EFE) module, respectively. Among them, the FI module is used to remove unimodal feature redundancy, capture multi-modal feature complementarity, and reduce the contamination of low-quality depth maps. The EFE is used to improve the edge quality of the final salient object prediction results. Furthermore, a Global Information Guide Integration (GIGI) module has been proposed to suppress the background noise and effectively highlight the salient objects' main features. It uses interleaving and fusion methods to automatically select and enhance the vital information in the original input features under the guidance of global features. We put the training of EGA-Net under the supervision of a new hybrid loss function that can simultaneously take global pixel point, foreground, and depth map quality into account. Quantitative and qualitative experiment results demonstrate that our method outperforms the 19 advanced methods on eight publicly available RGB-D salient object detection datasets with five evaluation metrics. You can find the code and results of our method athttps://github.com/guanyuzong/EGA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴圳发布了新的文献求助10
刚刚
飞翔的霸天哥应助WLWLW采纳,获得30
1秒前
Maestro_S应助jyyg采纳,获得10
1秒前
不愿透露姓名科研人完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助joruruo采纳,获得10
1秒前
nancyshine完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
liuqizong123完成签到,获得积分10
3秒前
东晓完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
科研通AI5应助kk采纳,获得10
5秒前
叶子发布了新的文献求助10
5秒前
xubee发布了新的文献求助10
5秒前
随心发布了新的文献求助10
5秒前
xiaobai完成签到,获得积分10
5秒前
6秒前
深情安青应助友好的半仙采纳,获得10
6秒前
NexusExplorer应助lss采纳,获得10
7秒前
7秒前
7秒前
额度发布了新的文献求助10
8秒前
研友_89jWGL发布了新的文献求助10
8秒前
8秒前
小姜醒醒完成签到,获得积分10
8秒前
畅快山兰发布了新的文献求助10
8秒前
清脆半邪发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
西呱呱发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
科研板砖完成签到,获得积分10
10秒前
bobo关注了科研通微信公众号
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426