EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration

运动表象 脑-机接口 脑电图 计算机科学 人工智能 特征提取 模式识别(心理学) 感觉系统 分类器(UML) 语音识别 心理学 精神科 认知心理学
作者
Denis Delisle-Rodríguez,Leticia Silva,Teodiano Freire Bastos Filho
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016047-016047 被引量:3
标识
DOI:10.1088/1741-2552/acb73b
摘要

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hubanj完成签到,获得积分10
刚刚
小二郎应助XiYang采纳,获得10
刚刚
卡卡西发布了新的文献求助20
1秒前
充电宝应助xu采纳,获得10
10秒前
ds完成签到,获得积分10
11秒前
11秒前
LALALA发布了新的文献求助10
11秒前
社科狗发布了新的文献求助10
12秒前
13秒前
华仔应助Ting采纳,获得10
16秒前
XiYang发布了新的文献求助10
16秒前
ZY发布了新的文献求助10
17秒前
ycp完成签到,获得积分10
19秒前
一诺相许完成签到 ,获得积分10
20秒前
应俊完成签到 ,获得积分10
22秒前
Muncy发布了新的文献求助30
23秒前
踏实三问完成签到,获得积分10
23秒前
大个应助安静碧灵采纳,获得10
23秒前
星辰大海应助Ting采纳,获得10
24秒前
woheyumi完成签到 ,获得积分10
24秒前
25秒前
韦小强发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
xuanxuan发布了新的文献求助10
29秒前
Ting发布了新的文献求助10
31秒前
CDC发布了新的文献求助10
31秒前
科研通AI6应助点墨采纳,获得10
31秒前
嘿嘿发布了新的文献求助10
33秒前
LY发布了新的文献求助10
34秒前
34秒前
科研通AI6应助gentlewen采纳,获得10
36秒前
安静碧灵发布了新的文献求助10
38秒前
高兴的盼夏应助xuanxuan采纳,获得20
42秒前
42秒前
哈哈完成签到,获得积分10
47秒前
53秒前
一叶知秋8980完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521