EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration

运动表象 脑-机接口 脑电图 计算机科学 人工智能 特征提取 模式识别(心理学) 感觉系统 分类器(UML) 语音识别 心理学 精神科 认知心理学
作者
Denis Delisle-Rodríguez,Leticia Silva,Teodiano Freire Bastos Filho
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016047-016047 被引量:3
标识
DOI:10.1088/1741-2552/acb73b
摘要

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lutra完成签到,获得积分10
刚刚
彳亍1117应助啦啦啦采纳,获得20
1秒前
踏实无敌应助Mabel采纳,获得30
1秒前
1秒前
2秒前
2秒前
搜集达人应助半眠采纳,获得10
2秒前
Candy2024完成签到 ,获得积分10
2秒前
科研通AI5应助典雅嫣采纳,获得10
2秒前
yangke应助horizon采纳,获得10
3秒前
汉堡包应助你再说一遍采纳,获得10
3秒前
4秒前
852应助xiaoman采纳,获得10
4秒前
HCB1发布了新的文献求助10
4秒前
斯文的寒风应助贾哲宇采纳,获得20
5秒前
韩无忧发布了新的文献求助10
5秒前
满鑫发布了新的文献求助10
5秒前
5秒前
lutra发布了新的文献求助10
5秒前
瑞瑞刘发布了新的文献求助10
6秒前
honey发布了新的文献求助10
6秒前
皮凡发布了新的文献求助10
6秒前
111发布了新的文献求助10
6秒前
JcoZ发布了新的文献求助10
6秒前
叮叮猫完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
嘿嘿完成签到 ,获得积分10
8秒前
希望天下0贩的0应助慢慢采纳,获得10
8秒前
8秒前
呃呃发布了新的文献求助10
9秒前
pluto应助研友_8DozVZ采纳,获得10
9秒前
科研通AI5应助zyw0532采纳,获得50
9秒前
myy发布了新的文献求助50
10秒前
天天快乐应助nananana采纳,获得10
10秒前
韩无忧完成签到,获得积分10
10秒前
77发布了新的文献求助30
11秒前
晊恦发布了新的文献求助30
11秒前
霸气的涵山完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744585
求助须知:如何正确求助?哪些是违规求助? 3287576
关于积分的说明 10054111
捐赠科研通 3003748
什么是DOI,文献DOI怎么找? 1649214
邀请新用户注册赠送积分活动 785129
科研通“疑难数据库(出版商)”最低求助积分说明 750947