EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration

运动表象 脑-机接口 脑电图 计算机科学 人工智能 特征提取 模式识别(心理学) 感觉系统 分类器(UML) 语音识别 心理学 精神科 认知心理学
作者
Denis Delisle-Rodríguez,Leticia Silva,Teodiano Freire Bastos Filho
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016047-016047 被引量:3
标识
DOI:10.1088/1741-2552/acb73b
摘要

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LMBAXn完成签到,获得积分10
1秒前
Aurora.H完成签到,获得积分10
1秒前
1122完成签到 ,获得积分10
2秒前
亚高山暗针叶林完成签到 ,获得积分10
2秒前
一米八完成签到 ,获得积分10
3秒前
3秒前
年少丶完成签到,获得积分10
3秒前
大美美完成签到,获得积分10
4秒前
nicheng完成签到 ,获得积分0
5秒前
7秒前
大吴克发布了新的文献求助10
8秒前
xdd发布了新的文献求助100
8秒前
fffff完成签到,获得积分10
9秒前
大巧若拙完成签到,获得积分10
10秒前
吕佳完成签到 ,获得积分10
11秒前
ooo发布了新的文献求助10
11秒前
delilicate完成签到 ,获得积分10
12秒前
这课题真顺利完成签到,获得积分10
12秒前
小城故事完成签到,获得积分10
13秒前
13秒前
李小明完成签到,获得积分10
15秒前
沉默傲芙完成签到,获得积分10
15秒前
16秒前
顾矜应助ooo采纳,获得10
17秒前
那时年少完成签到,获得积分10
20秒前
震动的沉鱼完成签到 ,获得积分10
20秒前
克偃统统完成签到 ,获得积分10
21秒前
八点必起完成签到,获得积分10
22秒前
flymove完成签到,获得积分10
22秒前
林登万完成签到,获得积分10
23秒前
Wang发布了新的文献求助10
27秒前
晨青完成签到,获得积分10
27秒前
笨笨青筠完成签到 ,获得积分10
28秒前
caicai完成签到,获得积分10
28秒前
SC完成签到,获得积分10
29秒前
29秒前
17完成签到,获得积分10
29秒前
Pakben完成签到,获得积分10
30秒前
fd163c完成签到 ,获得积分10
30秒前
独特的凝云完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664