EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration

运动表象 脑-机接口 脑电图 计算机科学 人工智能 特征提取 模式识别(心理学) 感觉系统 分类器(UML) 语音识别 心理学 精神科 认知心理学
作者
Denis Delisle-Rodríguez,Leticia Silva,Teodiano Freire Bastos Filho
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016047-016047 被引量:3
标识
DOI:10.1088/1741-2552/acb73b
摘要

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Quinta发布了新的文献求助10
1秒前
搁浅发布了新的文献求助10
1秒前
2秒前
lucky发布了新的文献求助10
3秒前
5秒前
科研通AI2S应助sjdenghao采纳,获得10
5秒前
有魅力彤完成签到,获得积分10
5秒前
汉堡包应助灵鹿采纳,获得10
6秒前
7秒前
万能图书馆应助WJQ采纳,获得10
7秒前
IrisYu发布了新的文献求助10
8秒前
银河泻影发布了新的文献求助10
9秒前
10秒前
10秒前
贪玩的访风完成签到 ,获得积分10
13秒前
himat完成签到,获得积分10
13秒前
雁回完成签到,获得积分10
14秒前
Friday发布了新的文献求助10
14秒前
叉叉仔啊完成签到,获得积分10
15秒前
欣慰幻桃发布了新的文献求助10
17秒前
18秒前
明亮的妙芙完成签到,获得积分10
18秒前
科目三应助swjs08采纳,获得10
18秒前
18秒前
18秒前
19秒前
银河泻影完成签到,获得积分10
19秒前
19秒前
卡卡西西西完成签到,获得积分10
20秒前
友好的曼雁关注了科研通微信公众号
20秒前
彭于晏应助yan采纳,获得20
20秒前
所所应助鹏哥爱科研采纳,获得10
21秒前
徐璇完成签到,获得积分10
21秒前
LJbe2o完成签到,获得积分10
21秒前
无花果应助zls采纳,获得10
22秒前
hulibin1208发布了新的文献求助10
23秒前
852应助李昕123采纳,获得10
23秒前
23秒前
WJQ发布了新的文献求助10
23秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297