清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel automatic wind power prediction framework based on multi-time scale and temporal attention mechanisms

风电预测 风力发电 计算机科学 可再生能源 电力系统 可靠性工程 功率(物理) 工程类 量子力学 电气工程 物理
作者
Meiyu Jiang,Xuetao Jiang,Rui Zhou,Qing Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.01222
摘要

Wind energy is a widely distributed, renewable, and environmentally friendly energy source that plays a crucial role in mitigating global warming and addressing energy shortages. Nevertheless, wind power generation is characterized by volatility, intermittence, and randomness, which hinder its ability to serve as a reliable power source for the grid. Accurate wind power forecasting is crucial for developing a new power system that heavily relies on renewable energy sources. However, traditional wind power forecasting systems primarily focus on ultra-short-term or short-term forecasts, limiting their ability to address the diverse adjustment requirements of the power system simultaneously. To overcome these challenges, We propose an automatic framework capable of forecasting wind power across multi-time scale. The framework based on the tree-structured Parzen estimator (TPE) and temporal fusion transformer (TFT) that can provide ultra-short-term, short-term and medium-term wind power forecasting power.Our approach employs the TFT for wind power forecasting and categorizes features based on their properties. Additionally, we introduce a generic algorithm to simultaneously fine-tune the hyperparameters of the decomposition method and model. We evaluate the performance of our framework by conducting ablation experiments using three commonly used decomposition algorithms and six state-of-the-art models for forecasting multi-time scale. The experimental results demonstrate that our proposed method considerably improves prediction accuracy on the public dataset Engie https://opendata-renewables.engie.com. Compared to the second-best state-of-the-art model, our approach exhibits a reduction of 31.75% and 28.74% in normalized mean absolute error (nMAE) for 24-hour forecasting, and 20.79% and 16.93% in nMAE for 48-hour forecasting, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安琪琪完成签到 ,获得积分10
17秒前
努力退休小博士完成签到 ,获得积分10
29秒前
33秒前
心想柿橙发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
心想柿橙完成签到,获得积分10
1分钟前
科研通AI2S应助风中不斜采纳,获得10
1分钟前
婼汐完成签到 ,获得积分10
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分0
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
简因完成签到 ,获得积分10
3分钟前
3分钟前
Becky完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
桥西小河完成签到 ,获得积分10
4分钟前
胡可完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
紫熊完成签到,获得积分10
5分钟前
5分钟前
111完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
矢思然完成签到,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
小二郎应助科研通管家采纳,获得10
8分钟前
8分钟前
小花匠发布了新的文献求助50
8分钟前
呃呃呃呃呃完成签到 ,获得积分10
8分钟前
冷傲半邪完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209