已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study

医学 接收机工作特性 结直肠癌 逻辑回归 布里氏评分 随机森林 癌症 支持向量机 机器学习 内科学 肿瘤科 人工智能 计算机科学
作者
Qin Li,Zhikun Liang,Jingzhong Xie,Guozeng Ye,Pengcheng Guan,Yaoyao Huang,Xiaoyan Li
出处
期刊:Journal of gastrointestinal oncology [AME Publishing Company]
卷期号:14 (1): 220-232 被引量:2
标识
DOI:10.21037/jgo-23-18
摘要

Colorectal cancer (CRC) is a heterogeneous group of malignancies distinguished by distinct clinical features. The association of these features with venous thromboembolism (VTE) is yet to be clarified. Machine learning (ML) models are well suited to improve VTE prediction in CRC due to their ability to receive the characteristics of a large number of features and understand the dataset to obtain implicit correlations.Data were extracted from 4,914 patients with colorectal cancer between August 2019 and August 2022, and 1,191 patients who underwent surgery on the primary tumor site with curative intent were included. The variables analyzed included patient-level factors, cancer-level factors, and laboratory test results. Model training was conducted on 30% of the dataset using a ten-fold cross-validation method and model validation was performed using the total dataset. The primary outcome was VTE occurrence in postoperative 30 days. Six ML algorithms, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), weighted support vector machine (SVM), a multilayer perception (MLP) network, and a long short-term memory (LSTM) network, were applied for model fitting. The model evaluation was based on six indicators, including receiver operating characteristic curve-area under the curve (ROC-AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and Brier score. Two previous VTE models (Caprini and Khorana) were used as the benchmarks.The incidence of postoperative VTE was 10.8%. The top ten significant predictors included lymph node metastasis, C-reactive protein, tumor grade, anemia, primary tumor location, sex, age, D-dimer level, thrombin time, and tumor stage. In our results, the XGBoost model showed the best performance, with a ROC-AUC of 0.990, a SEN of 96.9%, a SPE of 96.1% in training dataset and a ROC-AUC of 0.908, a SEN of 77.5%, a SPE of 93.7% in validation dataset. All ML models outperformed the previously developed models (Caprini and Khorana).This study developed postoperative VTE predictive models using six ML algorithms. The XGBoost VTE model might supply a complementary tool for clinical VTE prophylaxis decision-making and the proposed risk factors could shed some light on VTE risk stratification in CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空博涛发布了新的文献求助10
2秒前
辽沈最美女博完成签到,获得积分10
2秒前
夹心发布了新的文献求助10
2秒前
2秒前
上官若男应助欧梨欧梨采纳,获得10
2秒前
2秒前
3秒前
领导范儿应助99tyz采纳,获得30
3秒前
思源应助和谐悲采纳,获得10
5秒前
6秒前
可爱的函函应助白华苍松采纳,获得10
6秒前
x10n发布了新的文献求助10
6秒前
7秒前
8秒前
Kumple发布了新的文献求助10
8秒前
wzwer123发布了新的文献求助10
9秒前
宜醉宜游宜睡应助君莫笑采纳,获得10
10秒前
江峰发布了新的文献求助10
12秒前
椰子完成签到,获得积分10
15秒前
18秒前
恋风恋歌发布了新的文献求助10
19秒前
顶峰完成签到 ,获得积分10
19秒前
Vivian完成签到,获得积分10
21秒前
美好斓发布了新的文献求助10
22秒前
linjy发布了新的文献求助10
22秒前
x10n完成签到,获得积分10
23秒前
99tyz完成签到,获得积分10
23秒前
24秒前
25秒前
温纲完成签到,获得积分10
25秒前
26秒前
Binbin完成签到 ,获得积分10
26秒前
27秒前
深情安青应助linjy采纳,获得10
27秒前
mmyhn发布了新的文献求助10
28秒前
tqqwerty发布了新的文献求助10
29秒前
可爱的函函应助江峰采纳,获得10
29秒前
30秒前
传奇3应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150370
求助须知:如何正确求助?哪些是违规求助? 2801504
关于积分的说明 7845091
捐赠科研通 2459062
什么是DOI,文献DOI怎么找? 1308898
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727