髓鞘发生
髓鞘
再髓鞘化
少突胶质细胞
视束
生物
神经科学
转基因小鼠
多发性硬化
细胞生物学
病理
转基因
视神经
中枢神经系统
免疫学
医学
生物化学
基因
作者
Shuang-Ling Wu,Bin Yu,Yongjie Cheng,Shuyu Ren,Fei Wang,Lan Xiao,Jing‐Fei Chen,Feng Mei
标识
DOI:10.1016/j.expneurol.2023.114344
摘要
Alzheimer's disease (AD) is characterized by aggregating amyloid beta-protein (Aβ). Recent evidence has shown that insufficient myelinogenesis contributes to AD-related functional deficits. However, it remains unclear whether Aβ, in either plaque or soluble form, could alter myelinogenesis in AD brains. By cell-lineage tracing and labeling, we found both myelinogenesis and Aβ deposits displayed a region-specific pattern in the 13-month-old APP/PS1 transgenic mouse brains. Aβ plaques cause focal demyelination, but only about 15% Aβ plaques are closely associated with newly formed myelin in the APP/PS1 brains. Further, the Aβ plaque total area and the amount of new myelin are not linearly correlated across different cortical regions, suggesting that Aβ plaques induce demyelination but may not exclusively trigger remyelination. To understand the role of soluble Aβ in regulating myelinogenesis, we chose to observe the visual system, wherein soluble Aβ is detectable but without the presence of Aβ plaques in the APP/PS1 retina, optic nerve, and optic tract. Interestingly, newly-formed myelin density was not significantly altered in the APP/PS1 optic nerves and optic tracts as compared to the wildtype controls, suggesting soluble Aβ probably does not change myelinogenesis. Further, treatment of purified oligodendrocyte precursor cells (OPCs) with soluble Aβ (oligomers) for 48 h did not change the cell densities of MBP positive cells and PDGFRα positive OPCs in vitro. Consistently, injection of soluble Aβ into the lateral ventricles did not alter myelinogenesis in the corpus callosum of NG2-CreErt; Tau-mGFP mice significantly. Together, these findings indicate that the region-dependent myelinogenesis in AD brains is not directly linked to Aβ, but rather probably a synergic result in adapting to AD pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI