CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data

蒸散量 数据同化 均方误差 搭配(遥感) 环境科学 水准点(测量) 相关系数 计算机科学 气象学 气候学 数学 统计 地质学 大地测量学 物理 机器学习 生态学 生物
作者
Changming Li,Ziwei Liu,Wencong Yang,Zhuoyi Tu,Juntai Han,Sien Li,Hanbo Yang
出处
期刊:Earth System Science Data 卷期号:16 (4): 1811-1846 被引量:8
标识
DOI:10.5194/essd-16-1811-2024
摘要

Abstract. Land evapotranspiration (ET) plays a crucial role in Earth's water–carbon cycle, and accurately estimating global land ET is vital for advancing our understanding of land–atmosphere interactions. Despite the development of numerous ET products in recent decades, widely used products still possess inherent uncertainties arising from using different forcing inputs and imperfect model parameterizations. Furthermore, the lack of sufficient global in situ observations makes direct evaluation of ET products impractical, impeding their utilization and assimilation. Therefore, establishing a reliable global benchmark dataset and exploring evaluation methodologies for ET products is paramount. This study aims to address these challenges by (1) proposing a collocation-based method that considers non-zero error cross-correlation for merging multi-source data and (2) employing this merging method to generate a long-term daily global ET product at resolutions of 0.1° (2000–2020) and 0.25° (1980–2022), incorporating inputs from ERA5L, FluxCom, PMLv2, GLDAS, and GLEAM. The resulting product is the Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE). CAMELE exhibits promising performance across various vegetation coverage types, as validated against in situ observations. The evaluation process yielded Pearson correlation coefficients (R) of 0.63 and 0.65, root-mean-square errors (RMSEs) of 0.81 and 0.73 mm d−1, unbiased root-mean-square errors (ubRMSEs) of 1.20 and 1.04 mm d−1, mean absolute errors (MAEs) of 0.81 and 0.73 mm d−1, and Kling–Gupta efficiencies (KGEs) of 0.60 and 0.65 on average at resolutions of 0.1 and 0.25°, respectively. In addition, comparisons indicate that CAMELE can effectively characterize the multiyear linear trend, mean average, and extreme values of ET. However, it exhibits a tendency to overestimate seasonality. In summary, we propose a reliable set of ET data that can aid in understanding the variations in the water cycle and has the potential to serve as a benchmark for various applications. The dataset is publicly available at https://doi.org/10.5281/zenodo.8047038 (Li et al., 2023b).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助freebird采纳,获得30
刚刚
1秒前
小林太郎应助贪玩南烟采纳,获得20
1秒前
1秒前
1秒前
Pjmeng完成签到,获得积分10
1秒前
万能图书馆应助江桥采纳,获得10
2秒前
赘婿应助AA采纳,获得10
2秒前
3秒前
Gloyxtg发布了新的文献求助10
3秒前
田様应助wawa采纳,获得10
4秒前
4秒前
4秒前
DDDD应助伶俐如南采纳,获得30
5秒前
liuliqiong完成签到,获得积分10
5秒前
5秒前
哈哈哈哈完成签到 ,获得积分10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
苏卿应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得30
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得30
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得30
7秒前
yyi1应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
从容盼山应助科研通管家采纳,获得10
7秒前
小郭子应助科研通管家采纳,获得20
7秒前
pluto应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199