GDPs-YOLO: an improved YOLOv8s for coal gangue detection

煤矸石 采矿工程 环境科学 地质学 废物管理 工程类 冶金 材料科学
作者
Shuxiao Wang,Jiandong Zhu,Zuotao Li,Xiaoming Sun,Guoxin Wang
出处
期刊:International Journal of Coal Preparation and Utilization [Informa]
卷期号:: 1-14 被引量:3
标识
DOI:10.1080/19392699.2024.2346626
摘要

In response to the issues of low detection accuracy, slow speed, excessively large models, and difficult deployment in existing coal gangue recognition algorithms, a coal gangue target detection network based on an inverted residual structure is proposed. By conducting in-depth research on advanced edge computing networks, DPsP structure and DsP structure have been devised in this paper, while incorporating GhostModule to construct the GDPs-YOLO network within the YOLOv8s. The experimental results demonstrate the superior performance of the GDPs-YOLO network compared to both the baseline network and the control network. In comparison with the YOLOv5 series, YOLOv8 series, and four advanced edge computing networks, an increase in detection accuracy for coal gangue targets by a maximum of 2.5%, 1.6%, and 3.3% is observed, respectively. The model simultaneously exhibits enhanced speed and reduced model size, with a speed increase ranging from 12.5% to 86.85% compared to the control network. The compressibility of the model ranges from 24.07% to 94%. The inference latency measures approximately 2.8 ms, while the image processing speed reaches around 357 images per second, thereby satisfying the requirements for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助122采纳,获得10
1秒前
拖把精完成签到,获得积分10
2秒前
丛柳完成签到,获得积分10
2秒前
英俊的铭应助舒心砖头采纳,获得10
2秒前
风啊发布了新的文献求助10
3秒前
guo发布了新的文献求助10
4秒前
4秒前
小羊咩咩完成签到 ,获得积分10
5秒前
6秒前
万能图书馆应助咖啡猫采纳,获得10
8秒前
power完成签到,获得积分10
9秒前
9秒前
guo完成签到,获得积分10
10秒前
paul发布了新的文献求助10
11秒前
12秒前
紧张的碧曼完成签到 ,获得积分10
12秒前
12秒前
逆天小子发布了新的文献求助10
13秒前
灵巧绿海发布了新的文献求助40
13秒前
14秒前
14秒前
14秒前
14秒前
爆米花应助jmm_neuro采纳,获得10
14秒前
下课了吧完成签到,获得积分10
15秒前
风啊完成签到,获得积分10
15秒前
16秒前
16秒前
舒心砖头发布了新的文献求助10
16秒前
16秒前
吴枝雄完成签到 ,获得积分10
16秒前
CodeCraft应助mzx58采纳,获得30
17秒前
17秒前
18秒前
happy发布了新的文献求助10
19秒前
大个应助自觉的泽洋采纳,获得10
19秒前
20秒前
烂漫夜梦完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466022
求助须知:如何正确求助?哪些是违规求助? 3058969
关于积分的说明 9064256
捐赠科研通 2749385
什么是DOI,文献DOI怎么找? 1508522
科研通“疑难数据库(出版商)”最低求助积分说明 696945
邀请新用户注册赠送积分活动 696664