已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoupled interpretable robust domain generalization networks: A fault diagnosis approach across bearings, working conditions, and artificial-to-real scenarios

一般化 断层(地质) 人工智能 领域(数学分析) 计算机科学 人工神经网络 工程类 模式识别(心理学) 数据挖掘 机器学习 数学 地质学 数学分析 地震学
作者
Qiu‐Ning Zhu,Hongqi Liu,Chenyu Bao,Jiaming Zhu,Xinyong Mao,Songping He,Fangyu Peng
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102445-102445 被引量:7
标识
DOI:10.1016/j.aei.2024.102445
摘要

Increasing the generalizability of intelligent diagnostic models amidst data distribution shifts is receiving growing attention. Nevertheless, current domain generalization methods primarily enhance fault diagnosis in variable working conditions or machines. Due to the lack of prior knowledge to determine which features are task-unrelated and which features are task-related, existing methods typically learn coupled features. Facing industrial diagnosis scenarios across bearings and artificial-to-real faults, coupled features induce false correlations that limit the model's generalizability. To address this challenge, this paper proposes a decoupled interpretable robust domain generalization network (DIRNet) to enhance model generalizability by interpretably transferring fault-related components. First, this paper constructs a neural basis function decoupling module to disentangle the signal into fault-related and fault-unrelated basis functions. Second, a dynamic Shapley pruning network is proposed to dynamically prune the fault-unrelated neural basis functions, achieving the generalization of fault-related basis functions. Third, we introduce a loss function that relies on interpretable basis function selection to enhance the expressive capability of the basis function decoupling module. Experiments on a self-collected industrial distributed fault bearing case and two laboratory cases are carried out. The results demonstrate that DIRNet can obtain generalizable fault-related components to effectively deal with industrial across bearings and artificial-to-real fault diagnosis scenarios compared to the previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满破茧发布了新的文献求助10
刚刚
哈哈大笑完成签到,获得积分10
1秒前
YISAN发布了新的文献求助200
4秒前
vicky发布了新的文献求助10
7秒前
7秒前
过时的如雪完成签到,获得积分10
8秒前
HannahLL完成签到,获得积分10
8秒前
可爱的函函应助changeL采纳,获得10
8秒前
简让完成签到 ,获得积分10
9秒前
脑洞疼应助章鱼采纳,获得10
10秒前
feihu发布了新的文献求助10
11秒前
任性雪糕发布了新的文献求助10
13秒前
传奇3应助sqdr2采纳,获得10
13秒前
13秒前
jjjjchou完成签到,获得积分10
15秒前
迟大猫应助110采纳,获得10
16秒前
Diego完成签到,获得积分10
17秒前
Akim应助xwwx采纳,获得10
19秒前
20秒前
闫栋完成签到 ,获得积分10
21秒前
迟大猫应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
爱静静应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
迟大猫应助科研通管家采纳,获得10
22秒前
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
大模型应助的的墨采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
sqdr2发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109