A Machine Learning Approach for Simultaneous Electrochemical Detection of Dopamine and Serotonin in an Optimized Carbon Thread-Based Miniaturized Device

检出限 计算机科学 血清素 色谱法 人工智能 分析化学(期刊) 机器学习 化学 生物化学 受体
作者
Sanjeet Kumar,Amit Bhagat,Manish Bhaiyya,Khairunnisa Amreen,Satish Kumar Dubey,Sanket Goel
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (13): 21378-21385
标识
DOI:10.1109/jsen.2024.3386655
摘要

To further optimize output from electrochemical sensing technology and minimize human intervention, machine learning (ML) models are capable of imparting data-driven predictions. The present work focuses on developing a miniaturized EC sensing platform for the simultaneous detection of neurotransmitters such as dopamine (DA) and serotonin or 5-hydroxytryptamine (5-HT). A modified carbon thread-based miniaturized device (CTMD) was developed using a CO 2 laser scriber to detect dopamine and serotonin. The devices showed a linear range for DA and 5-HT as 0.5 μM – 150 μM and 0.5 μM – 200 μM, respectively. The Limit of detection (LOD) and Limit of quantification (LOQ) for DA and 5-HT were 0.25 μM, 0.76 μM (R 2 = 0.99, N = 3), and 0.22 μM, 0.78 μM (R 2 = 0.98, N = 3), respectively. Further, real sample analysis in blood serum was performed, demonstrating good recovery and selectivity. Finally, ML prediction was performed over 100 % of the generated data through analytical methods, whereas 80% of the data was used for training purposes, and 20% of the data was used for testing purposes. Various ML regression models such as linear regression, decision tree, k-NN, Support vector regression, gradient, adaptive boosting, and random forest were used to obtain the best accurate prediction, low error values, and increased R2-scores. Apart from support vector and linear regression, all other techniques provided the best R2-scores of over 0.98 with low error values. Based on the obtained results, the fabricated device, including the ML approach, can effectively be leveraged in diagnostics devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小妮子发布了新的文献求助10
刚刚
Xiaoxiao应助春天先生采纳,获得10
1秒前
2秒前
笨笨山芙发布了新的文献求助10
4秒前
ll应助wmq采纳,获得10
4秒前
渊思发布了新的文献求助10
6秒前
小虎应助方俊驰采纳,获得10
7秒前
daisy发布了新的文献求助10
7秒前
风清扬发布了新的文献求助10
7秒前
8秒前
9秒前
fang完成签到,获得积分10
10秒前
深情安青应助顺利狗采纳,获得10
12秒前
lee完成签到,获得积分10
13秒前
忧郁凌波发布了新的文献求助10
14秒前
14秒前
zy发布了新的文献求助10
14秒前
害羞的黄蜂关注了科研通微信公众号
20秒前
白兰鸽完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
23秒前
今后应助外向的飞雪采纳,获得10
24秒前
科研通AI5应助阳光香水采纳,获得10
26秒前
二三发布了新的文献求助10
27秒前
WoeL.Aug.11完成签到 ,获得积分10
27秒前
顺利狗发布了新的文献求助10
27秒前
春天先生关注了科研通微信公众号
28秒前
28秒前
anzhi完成签到,获得积分10
33秒前
33秒前
chy发布了新的文献求助10
34秒前
思源应助曾珍采纳,获得10
37秒前
超帅连虎发布了新的文献求助10
38秒前
Mercury完成签到,获得积分10
38秒前
anzhi发布了新的文献求助10
40秒前
煦白发布了新的文献求助10
41秒前
43秒前
fengbeing完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343