The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions

医学 无线电技术 胆囊 价值(数学) 放射科 内科学 机器学习 计算机科学
作者
Shengnan Yin,Ning Ding,Yiding Ji,Zhenguo Qiao,Jianmao Yuan,Jing Chi,Long Hao Jin
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (6): 554-564
标识
DOI:10.1177/02841851241245970
摘要

Background Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery. Purpose To investigate the potential of various machine learning models, incorporating radiomics and deep transfer learning, in predicting the nature of cholesterol and adenomatous gallbladder polyps. Material and Methods A retrospective analysis was conducted on clinical and imaging data from 100 patients with cholesterol or adenomatous polyps confirmed by surgery and pathology at our hospital between September 2015 and February 2023. Preoperative contrast-enhanced CT radiomics combined with deep learning features were utilized, and t-tests and least absolute shrinkage and selection operator (LASSO) cross-validation were employed for feature selection. Subsequently, 11 machine learning algorithms were utilized to construct prediction models, and the area under the ROC curve (AUC), accuracy, and F1 measure were used to assess model performance, which was validated in a validation group. Results The Logistic algorithm demonstrated the most effective prediction in identifying polyp properties based on 10 radiomics combined with deep learning features, achieving the highest AUC (0.85 in the validation group, 95% confidence interval = 0.68–1.0). In addition, the accuracy (0.83 in the validation group) and F1 measure (0.76 in the validation group) also indicated strong performance. Conclusion The machine learning radiomics combined with deep learning model based on enhanced CT proves valuable in predicting the characteristics of cholesterol and adenomatous gallbladder polyps. This approach provides a more reliable basis for preoperative diagnosis and treatment of these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈博士完成签到,获得积分10
1秒前
Citrus完成签到,获得积分10
2秒前
费老三发布了新的文献求助30
2秒前
华仔应助chenjyuu采纳,获得10
2秒前
2秒前
最最最发布了新的文献求助10
2秒前
2秒前
Tuesday完成签到 ,获得积分10
3秒前
3秒前
4秒前
阿毛发布了新的文献求助10
5秒前
6秒前
情怀应助灵巧荆采纳,获得10
6秒前
Ll发布了新的文献求助10
6秒前
Peter发布了新的文献求助30
7秒前
7秒前
8秒前
科研韭菜发布了新的文献求助10
8秒前
科研通AI5应助爱学习采纳,获得10
8秒前
科研通AI5应助跳跃的太阳采纳,获得10
8秒前
苏尔琳诺完成签到,获得积分10
8秒前
科研通AI5应助a1oft采纳,获得10
9秒前
9秒前
关关过完成签到,获得积分10
9秒前
呢不辣完成签到,获得积分10
9秒前
9秒前
shi hui应助陈博士采纳,获得10
9秒前
9秒前
糖糖关注了科研通微信公众号
10秒前
10秒前
小恶于完成签到 ,获得积分10
10秒前
科研通AI2S应助落晨采纳,获得10
11秒前
11秒前
12秒前
半颗橙子发布了新的文献求助10
12秒前
小可爱完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
Jiangnj发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762