The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions

医学 无线电技术 胆囊 价值(数学) 放射科 内科学 机器学习 计算机科学
作者
Shengnan Yin,Ning Ding,Yiding Ji,Zhenguo Qiao,Jianmao Yuan,Jing Chi,Long Hao Jin
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (6): 554-564
标识
DOI:10.1177/02841851241245970
摘要

Background Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery. Purpose To investigate the potential of various machine learning models, incorporating radiomics and deep transfer learning, in predicting the nature of cholesterol and adenomatous gallbladder polyps. Material and Methods A retrospective analysis was conducted on clinical and imaging data from 100 patients with cholesterol or adenomatous polyps confirmed by surgery and pathology at our hospital between September 2015 and February 2023. Preoperative contrast-enhanced CT radiomics combined with deep learning features were utilized, and t-tests and least absolute shrinkage and selection operator (LASSO) cross-validation were employed for feature selection. Subsequently, 11 machine learning algorithms were utilized to construct prediction models, and the area under the ROC curve (AUC), accuracy, and F1 measure were used to assess model performance, which was validated in a validation group. Results The Logistic algorithm demonstrated the most effective prediction in identifying polyp properties based on 10 radiomics combined with deep learning features, achieving the highest AUC (0.85 in the validation group, 95% confidence interval = 0.68–1.0). In addition, the accuracy (0.83 in the validation group) and F1 measure (0.76 in the validation group) also indicated strong performance. Conclusion The machine learning radiomics combined with deep learning model based on enhanced CT proves valuable in predicting the characteristics of cholesterol and adenomatous gallbladder polyps. This approach provides a more reliable basis for preoperative diagnosis and treatment of these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河发布了新的文献求助10
刚刚
刚刚
大黄发布了新的文献求助10
1秒前
汉堡包应助鲁路修采纳,获得10
2秒前
Lucas应助完美芹采纳,获得10
2秒前
3秒前
4秒前
4秒前
852应助星河采纳,获得10
5秒前
小橙完成签到 ,获得积分10
6秒前
聚砂成塔完成签到,获得积分10
6秒前
hello发布了新的文献求助10
7秒前
完美芹发布了新的文献求助10
8秒前
shitzu完成签到 ,获得积分10
8秒前
8秒前
曾经采蓝发布了新的文献求助10
9秒前
科研通AI2S应助Mp4采纳,获得10
10秒前
11秒前
起风完成签到,获得积分10
13秒前
Suzy完成签到,获得积分10
18秒前
19秒前
袁大头发布了新的文献求助10
20秒前
Mp4完成签到,获得积分10
22秒前
22秒前
善学以致用应助敏感时光采纳,获得10
25秒前
杰瑞院士发布了新的文献求助10
27秒前
慕青应助wangayting采纳,获得10
28秒前
29秒前
30秒前
落林樾完成签到 ,获得积分10
31秒前
邹修坤完成签到,获得积分20
31秒前
小鹿完成签到,获得积分20
31秒前
lisz77发布了新的文献求助80
31秒前
慕新完成签到,获得积分10
32秒前
GLZ6984完成签到,获得积分10
32秒前
35秒前
鲁路修发布了新的文献求助10
35秒前
杰瑞院士发布了新的文献求助10
37秒前
TT发布了新的文献求助10
37秒前
Orange应助Sun1c7采纳,获得10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226