Efficient degradation and enhanced α-glucosidase inhibitory activity of apricot polysaccharides through non-thermal plasma assisted non-metallic Fenton reaction

多糖 化学 降级(电信) 单糖 介质阻挡放电 阿卡波糖 化学结构 核化学 色谱法 有机化学 电信 计算机科学 电极 物理化学
作者
Andi Suo,Gongjian Fan,Caie Wu,Tingting Li,Xiaojing Li,Dandan Zhou,Kaiping Cong,Xiuzhen Cheng,Wenjuan Sun
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:266: 131103-131103
标识
DOI:10.1016/j.ijbiomac.2024.131103
摘要

Dielectric barrier discharge (DBD) was a commonly used non-thermal plasma (CP) technology. This paper aimed to enhance the biological activity of apricot polysaccharides (AP) by using dielectric barrier discharge (DBD-CP) assisted H2O2-VC Fenton reaction for degradation. The degradation conditions were optimized through response surface methodology. The molecular weight (Mw) of degraded apricot polysaccharides (DAP) was 19.71 kDa, which was 7.25 % of AP. The inhibition rate of DAP (2 mg/mL) was 82.8 ± 3.27 %, which was 106.87 % higher than that of AP. DBD-CP/H2O2-VC degradation changed the monosaccharide composition of AP and improved the linearity of polysaccharide chains. In addition, a novel apricot polysaccharide DAP-2 with a Mw of only 6.60 kDa was isolated from DAP. The repeating units of the main chain of DAP-2 were →4)-α-D-GalpA-(1 →, the branch chain was mainly composed of α-D-GalpA-(1 → 2)-α-L-Rhap-(1→ connected to O-3 position →3,4)-α-D-GalpA-(1→. The complex structure formed by the combination of DAP-2 and α-glucosidase was stable. DAP-2 had a higher α-glucosidase binding ability than the acarbose. These results suggested that DAP-2 had the potential to be developed as a potential hypoglycemic functional food and drug.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Danny完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
芋圆粒发布了新的文献求助10
4秒前
星辰大海应助宁琳采纳,获得10
4秒前
5秒前
Ava应助qqq采纳,获得10
6秒前
7秒前
狂野的驳给狂野的驳的求助进行了留言
9秒前
子车茗应助计时器响了采纳,获得10
9秒前
娜行完成签到 ,获得积分10
9秒前
科研通AI2S应助空格TNT采纳,获得10
9秒前
英姑应助乐安采纳,获得10
10秒前
Nathan完成签到 ,获得积分10
10秒前
小蘑菇应助达da采纳,获得10
11秒前
飘逸踏歌发布了新的文献求助10
11秒前
常先发布了新的文献求助10
11秒前
丘比特应助苹果立果采纳,获得30
12秒前
星辰大海应助zhangwj226采纳,获得10
12秒前
三里墩头应助小月986采纳,获得10
12秒前
whyme完成签到,获得积分10
12秒前
14秒前
15秒前
Owen应助苹果小蜜蜂采纳,获得10
15秒前
852应助乐观的山槐采纳,获得10
17秒前
18秒前
20秒前
20秒前
白鸽鸽发布了新的文献求助10
20秒前
ding应助123456采纳,获得10
21秒前
22秒前
玲玲发布了新的文献求助10
22秒前
24秒前
无辜澜发布了新的文献求助10
25秒前
25秒前
壹号发布了新的文献求助20
26秒前
花生小铺主人完成签到,获得积分10
26秒前
29秒前
芋圆粒发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316339
求助须知:如何正确求助?哪些是违规求助? 2948037
关于积分的说明 8539126
捐赠科研通 2624046
什么是DOI,文献DOI怎么找? 1435703
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532