Non-destructive state-of-health diagnosis algorithm for blended electrode lithium-ion battery

稳健性(进化) 电池(电) 电压 锂离子电池 离子 电极 健康状况 荷电状态 开路电压 加速老化 控制理论(社会学) 计算机科学 材料科学 电气工程 工程类 复合材料 化学 物理 热力学 物理化学 人工智能 功率(物理) 有机化学 控制(管理) 基因 生物化学
作者
Ruben Brunetaud,Karrick Mergo Mbeya,Nathalie Legrand,Olivier Briat,Armande Capitaine,Jean-Michel Vinassa
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:62: 106863-106863 被引量:4
标识
DOI:10.1016/j.est.2023.106863
摘要

Optimisation methods based on half-cell measurements provide efficient non-destructive aging diagnosis for lithium-ion batteries. However, a blend electrode using this approach could bias the observations and lead to false aging scenario determination. The present study shows a non-intrusive method to quantify both the state of health of a cell and the partial aging of a blend active material LMFP:NCA. From the classical optimisation of the half-cell positions on a cell pseudo-open-circuit voltage, a blend submodel is added to integrate the underlying changes into the blend mass fraction. After the optimisation was performed on the battery check-up measurements, the aging phenomena were gathered into degradation modes that were quantified throughout the cell lifetime, and the changes in the electrode positions were converted into losses of lithium inventory, losses of positive and negative active materials, and an increase in ohmic resistance. The partial aging of the blend components was calculated using the mass fraction evolution of the corresponding loss of the electrode. Investigations were conducted on a 30-Ah high-power LMFP:NCA/graphite lithium-ion prototype battery. The basic root mean square error optimisation criterion was associated with differential methods (incremental capacity and differential voltage) to validate the numerical results and enhance the robustness of the optimisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助charles采纳,获得10
1秒前
JamesPei应助奋斗的紫易采纳,获得10
1秒前
曾瀚宇完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
4秒前
4秒前
6秒前
6秒前
白糖完成签到,获得积分10
7秒前
7秒前
xx完成签到,获得积分10
7秒前
欣慰的水瑶完成签到,获得积分10
8秒前
高不二发布了新的文献求助10
9秒前
10秒前
10秒前
ma_yuru完成签到,获得积分10
10秒前
11秒前
牛碧菡发布了新的文献求助10
11秒前
13秒前
岑梨愁发布了新的文献求助10
13秒前
NexusExplorer应助明理的依柔采纳,获得10
13秒前
8R60d8应助12321234采纳,获得10
14秒前
柯一一应助12321234采纳,获得10
14秒前
宋如风完成签到,获得积分10
15秒前
ma_yuru发布了新的文献求助10
15秒前
科研辣椒发布了新的文献求助10
17秒前
17秒前
李清完成签到 ,获得积分10
19秒前
高不二完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
20秒前
yujiashun发布了新的文献求助20
21秒前
咦呀完成签到,获得积分10
21秒前
21秒前
22秒前
cheetollly发布了新的文献求助10
22秒前
24秒前
liwenqiang发布了新的文献求助10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719