Non-destructive state-of-health diagnosis algorithm for blended electrode lithium-ion battery

稳健性(进化) 电池(电) 电压 锂离子电池 离子 电极 健康状况 荷电状态 开路电压 加速老化 控制理论(社会学) 计算机科学 材料科学 电气工程 工程类 复合材料 化学 物理 热力学 物理化学 人工智能 功率(物理) 有机化学 控制(管理) 基因 生物化学
作者
Ruben Brunetaud,Karrick Mergo Mbeya,Nathalie Legrand,Olivier Briat,Armande Capitaine,Jean-Michel Vinassa
出处
期刊:Journal of energy storage [Elsevier]
卷期号:62: 106863-106863 被引量:4
标识
DOI:10.1016/j.est.2023.106863
摘要

Optimisation methods based on half-cell measurements provide efficient non-destructive aging diagnosis for lithium-ion batteries. However, a blend electrode using this approach could bias the observations and lead to false aging scenario determination. The present study shows a non-intrusive method to quantify both the state of health of a cell and the partial aging of a blend active material LMFP:NCA. From the classical optimisation of the half-cell positions on a cell pseudo-open-circuit voltage, a blend submodel is added to integrate the underlying changes into the blend mass fraction. After the optimisation was performed on the battery check-up measurements, the aging phenomena were gathered into degradation modes that were quantified throughout the cell lifetime, and the changes in the electrode positions were converted into losses of lithium inventory, losses of positive and negative active materials, and an increase in ohmic resistance. The partial aging of the blend components was calculated using the mass fraction evolution of the corresponding loss of the electrode. Investigations were conducted on a 30-Ah high-power LMFP:NCA/graphite lithium-ion prototype battery. The basic root mean square error optimisation criterion was associated with differential methods (incremental capacity and differential voltage) to validate the numerical results and enhance the robustness of the optimisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ck发布了新的文献求助10
1秒前
1秒前
科研通AI6应助ww采纳,获得10
1秒前
wanci应助N1koooooo采纳,获得10
2秒前
2秒前
乐乐应助Yantuobio采纳,获得10
2秒前
忧郁小刺猬完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
怡然的怜烟应助丫丫采纳,获得30
3秒前
畅畅发布了新的文献求助10
4秒前
深情安青应助xgx984采纳,获得10
4秒前
战神小新完成签到,获得积分10
4秒前
4秒前
小二郎应助清茶韵心采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
dw发布了新的文献求助10
5秒前
小薯条发布了新的文献求助10
6秒前
JamesPei应助gg采纳,获得10
6秒前
SciGPT应助甜美的秋尽采纳,获得10
7秒前
7秒前
越红完成签到,获得积分10
7秒前
积极觅海发布了新的文献求助10
8秒前
Otto Curious发布了新的文献求助10
9秒前
寒冷书兰完成签到,获得积分10
9秒前
功不唐捐完成签到 ,获得积分10
9秒前
10秒前
10秒前
12秒前
科研通AI6应助汤汤采纳,获得10
12秒前
陈夏萍完成签到 ,获得积分10
12秒前
苹果洋葱完成签到,获得积分10
14秒前
清茶韵心完成签到,获得积分10
14秒前
14秒前
14秒前
大模型应助QHz采纳,获得10
14秒前
洛尚发布了新的文献求助10
15秒前
大模型应助十月采纳,获得10
15秒前
xx_y发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794