Multi-view dynamic graph convolution neural network for traffic flow prediction

计算机科学 数据挖掘 图形 流量(计算机网络) 交通生成模型 卷积(计算机科学) 人工神经网络 人工智能 实时计算 理论计算机科学 计算机网络
作者
Xiaohui Huang,Yuming Ye,Xiaofei Yang,Liyan Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119779-119779 被引量:48
标识
DOI:10.1016/j.eswa.2023.119779
摘要

The rapid urbanization and continuous improvement of road traffic equipment result in massive daily production of traffic data. These data contain the long-term evolution of traffic flow and dynamic changes in the traffic road network. Due to the complex topology of the traffic road network, traffic flow prediction is challenging as it contains complex, multi-periodic patterns, and is often affected by sudden events. In this paper, we propose a Multi-View Dynamic Graph Convolution Network (MVDGCN) that captures different levels of spatial–temporal dependencies to predict traffic flow. Firstly, we use the coupling graph convolution network to learn the relationship matrix among stations dynamically, capturing the spatial dependencies at different levels in the traffic network. Secondly, we establish three encoder–decoders, representing hourly, daily, and weekly views, to extract the evolution law of traffic flow from three different time periods. Finally, we use the dynamic fusion module to merge the spatial–temporal dependencies extracted from the multi-view encoder–decoders. We conducted experiments on two real datasets, NYCTaxi and NYCBike, and found that our proposed MVDGCN model outperformed the best baseline, improving the RMSE, MAE, PCC, and MAPE by 12.9%, 6.2%, 0.8%, and 6.5% respectively on the NYCBike dataset and 9.2%, 4.2%, 4.6%, and 3.0% respectively on the NYCTaxi dataset. These results show that the proposed MVDGCN model performs better than state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助wang采纳,获得10
刚刚
槐序二三发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
111发布了新的文献求助10
2秒前
dou发布了新的文献求助10
2秒前
2秒前
科研通AI6应助JJJJccW采纳,获得10
2秒前
嘟嘟完成签到,获得积分10
3秒前
3秒前
科研通AI6应助Picrif采纳,获得10
3秒前
asdfzxcv应助WangYZ采纳,获得10
3秒前
天天快乐应助xuan采纳,获得10
3秒前
pluto应助xuan采纳,获得10
3秒前
我是老大应助xuan采纳,获得10
3秒前
一叶知秋应助xuan采纳,获得10
3秒前
科研通AI6应助xuan采纳,获得10
3秒前
sunshine发布了新的文献求助10
3秒前
科研通AI6应助xuan采纳,获得10
3秒前
汉堡包应助xuan采纳,获得10
4秒前
科研通AI6应助xuan采纳,获得10
4秒前
科研通AI6应助xuan采纳,获得10
4秒前
天天快乐应助xuan采纳,获得10
4秒前
狄淇儿发布了新的文献求助10
5秒前
XH_L发布了新的文献求助10
5秒前
Scarlett发布了新的文献求助10
5秒前
脑洞疼应助CMUSK采纳,获得10
6秒前
科研通AI6应助LTT采纳,获得10
6秒前
JamesPei应助槐序二三采纳,获得10
6秒前
光芒万丈小太阳关注了科研通微信公众号
6秒前
6秒前
qin完成签到,获得积分10
7秒前
7秒前
赘婿应助FFZ采纳,获得10
7秒前
可乐鸡翅发布了新的文献求助10
7秒前
搜集达人应助紧张的毛衣采纳,获得10
8秒前
8秒前
JJJJJin发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407