Multi-view dynamic graph convolution neural network for traffic flow prediction

计算机科学 数据挖掘 图形 流量(计算机网络) 交通生成模型 卷积(计算机科学) 人工神经网络 人工智能 实时计算 理论计算机科学 计算机网络
作者
Xiaohui Huang,Yuming Ye,Xiaofei Yang,Liyan Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119779-119779 被引量:48
标识
DOI:10.1016/j.eswa.2023.119779
摘要

The rapid urbanization and continuous improvement of road traffic equipment result in massive daily production of traffic data. These data contain the long-term evolution of traffic flow and dynamic changes in the traffic road network. Due to the complex topology of the traffic road network, traffic flow prediction is challenging as it contains complex, multi-periodic patterns, and is often affected by sudden events. In this paper, we propose a Multi-View Dynamic Graph Convolution Network (MVDGCN) that captures different levels of spatial–temporal dependencies to predict traffic flow. Firstly, we use the coupling graph convolution network to learn the relationship matrix among stations dynamically, capturing the spatial dependencies at different levels in the traffic network. Secondly, we establish three encoder–decoders, representing hourly, daily, and weekly views, to extract the evolution law of traffic flow from three different time periods. Finally, we use the dynamic fusion module to merge the spatial–temporal dependencies extracted from the multi-view encoder–decoders. We conducted experiments on two real datasets, NYCTaxi and NYCBike, and found that our proposed MVDGCN model outperformed the best baseline, improving the RMSE, MAE, PCC, and MAPE by 12.9%, 6.2%, 0.8%, and 6.5% respectively on the NYCBike dataset and 9.2%, 4.2%, 4.6%, and 3.0% respectively on the NYCTaxi dataset. These results show that the proposed MVDGCN model performs better than state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn发布了新的文献求助10
1秒前
孤央完成签到 ,获得积分10
2秒前
危机的芝麻完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
7秒前
科研通AI6应助沐沐采纳,获得10
8秒前
Kka完成签到 ,获得积分10
8秒前
9秒前
longer发布了新的文献求助10
9秒前
10秒前
Yada完成签到,获得积分20
10秒前
10秒前
594778089发布了新的文献求助10
11秒前
FashionBoy应助niko采纳,获得10
11秒前
bkagyin应助niko采纳,获得10
11秒前
完美世界应助niko采纳,获得10
11秒前
传奇3应助niko采纳,获得10
11秒前
bkagyin应助niko采纳,获得10
11秒前
科目三应助niko采纳,获得10
11秒前
科研通AI6应助niko采纳,获得10
11秒前
思源应助niko采纳,获得10
11秒前
我是老大应助niko采纳,获得10
11秒前
汉堡包应助niko采纳,获得10
11秒前
学术pig发布了新的文献求助10
11秒前
12秒前
噜啦啦完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助gu123采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
同瓜不同命完成签到,获得积分10
14秒前
沙彬发布了新的文献求助10
15秒前
bmhsys发布了新的文献求助10
16秒前
邹嘉锋完成签到,获得积分10
16秒前
研途牛马发布了新的文献求助10
16秒前
学术pig完成签到,获得积分10
17秒前
忍冬半夏发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525160
求助须知:如何正确求助?哪些是违规求助? 4615470
关于积分的说明 14548546
捐赠科研通 4553537
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475908
关于科研通互助平台的介绍 1447670