iDHS-DPPE: a method based on dual-path parallel ensemble decision for DNase I hypersensitive sites prediction

染色质 计算生物学 人工智能 计算机科学 劈理(地质) 机器学习 基因 生物 遗传学 古生物学 断裂(地质)
作者
Xuebin Lv,Yufeng Wang,Hong‐Wen Liu
标识
DOI:10.1117/12.2667447
摘要

The DNase I Hypersensitive site (DHS) is the chromatin region that exhibits a hypersensitive response to cleavage by the DNase I enzyme. It is a universal marker for regulatory DNA and associated with genetic variation in a wide range of diseases and phenotypic traits. However, traditional experimental methods have limited the rapid detection of DHS as well as its development. Therefore, effective and accurate methods to explore potential DHSs need to be developed urgently. In this task, a deep learning approach called iDHS-DPPE to predict DHSs in different cell types and developmental stages of the mouse. iDHS-DPPE uses a dual-path parallel integrated neural network to identify DHSs accurately. First, the DNA sequence is segmented into 2-mers to extract information. Then, the DHSs accurately-attention model captures remote dependencies and the MSFRN model enables hierarchical information fusion. The dual models are trained separately to enhance the feature information. Finally, the ensemble decision of two models yields the prediction results, enabling the integration of information from multiple views. The average AUC across all datasets was 93.1% and 93.3% in the 5-fold cross-validation and independent testing experiments, respectively. The experimental results demonstrate that iDHS-DPPE outperforms the state-of-the-art method on all datasets, proving that iDHS-DPPE is effective and reliable for identifying DHSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4秒前
林结衣完成签到,获得积分10
5秒前
完美世界应助热情大树采纳,获得10
6秒前
yyy完成签到 ,获得积分10
6秒前
7秒前
lmg发布了新的文献求助10
7秒前
SYLH应助cc采纳,获得10
7秒前
梦想完成签到,获得积分20
8秒前
8秒前
qq158014169完成签到 ,获得积分10
8秒前
8秒前
深情安青应助DamenS采纳,获得10
8秒前
我是老大应助DamenS采纳,获得10
9秒前
Ava应助DamenS采纳,获得10
9秒前
orixero应助DamenS采纳,获得10
9秒前
思源应助DamenS采纳,获得10
9秒前
fan完成签到,获得积分10
10秒前
打打应助小杨采纳,获得10
10秒前
zokor完成签到 ,获得积分0
11秒前
九龙飞翔完成签到,获得积分10
12秒前
yookia应助koukou采纳,获得10
12秒前
12秒前
lh发布了新的文献求助10
14秒前
阳光的雁易完成签到,获得积分10
15秒前
研友_VZG7GZ应助DamenS采纳,获得10
16秒前
CodeCraft应助DamenS采纳,获得10
16秒前
万能图书馆应助DamenS采纳,获得10
16秒前
慕青应助DamenS采纳,获得10
16秒前
顾矜应助DamenS采纳,获得10
16秒前
慕青应助DamenS采纳,获得10
16秒前
脑洞疼应助DamenS采纳,获得10
16秒前
Jasper应助DamenS采纳,获得10
16秒前
共享精神应助DamenS采纳,获得10
16秒前
wanci应助DamenS采纳,获得10
16秒前
GGGG发布了新的文献求助20
17秒前
18秒前
共享精神应助Baihanyu采纳,获得10
18秒前
忧郁豆芽发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651