自愈水凝胶
双功能
纳米技术
材料科学
共价键
小分子
智能材料
分子
脚手架
组合化学
化学
计算机科学
有机化学
生物化学
高分子化学
催化作用
数据库
作者
Xuejing Cheng,Lin Li,Lei Yang,Quan Huang,Yiwen Li,Yiyun Cheng
标识
DOI:10.1002/adfm.202206201
摘要
Abstract All‐small‐molecule smart hydrogels fabricated by naturally occurring and commercially available small molecular building blocks have attracted increasing interest due to their unique features such as biofunction integration and multi‐stimuli responsiveness. While a few examples have been well‐explored, the further development of additional kinds of all‐small‐molecule smart hydrogels is severely hindered by the lack of enough commensurate building blocks from nature and market. Therefore, it is crucial to seek new strategies to expand the scope of all‐small‐molecule dynamic covalent hydrogels using well‐established natural and commercial chemicals. Herein, this issue is addressed by introducing a bifunctional adapter bearing an aldehyde group and a boronic acid group to construct a novel all‐small‐molecule smart hydrogel through the dynamical covalent cross‐linking with naturally occurring building blocks (e.g., tobramycin and tannic acid). The prepared hydrogel presents several promising features including tunable mechanical property, multi‐stimuli responsiveness, controlled drug release profiles, and excellent in vitro and in vivo antibacterial performances. This study provides a new strategy to efficiently expand the scope of the all‐small‐molecule smart hydrogels via the integration of the naturally occurring building blocks and the bifunctional adapters.
科研通智能强力驱动
Strongly Powered by AbleSci AI