Carbon emission accounting and spatial distribution of industrial entities in Beijing—Combining nighttime light data and urban functional areas

北京 环境科学 空间分布 碳纤维 分布(数学) 环境资源管理 中国 遥感 地理 计算机科学 数学 数学分析 考古 算法 复合数
作者
Xiaoyu Wang,Ying Cai,Gang Liu,Mingjie Zhang,Yuping Bai,Fan Zhang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:70: 101759-101759 被引量:32
标识
DOI:10.1016/j.ecoinf.2022.101759
摘要

Quantifying current carbon emissions their fine scale spatial distribution is necessary to improve carbon emission management, requirements, and emission reduction strategies of key industries. This study established an entity-level model to estimate carbon emissions by combining geographic information of points of interest (POIs) and nighttime light data from Beijing in 2018. The model accounted for the carbon emissions of Beijing's key entities and industries and simulated their spatial distribution. The results showed a good fit between the carbon emissions of the entities and nighttime light brightness values. The 130-m resolution of the urban carbon emission distribution data had a higher spatial simulation accuracy than that of the 1-km Open-Data inventory for anthropogenic carbon dioxide (ODIAC) data. Through the lens of urban functional areas, the average value of carbon emissions was highest in commercial areas and lowest in public management and service areas, at 78,840.11 tC/km2 and 6844.79 tC/km2, respectively. In terms of the industrial sector, the transportation industry had the highest carbon emissions, with a total of 31.86 Mt., while non-metal mining and oil and gas extraction had almost no energy consumption, with total carbon emissions of 1.38 Mt. The spatial clustering results showed that the distribution of carbon emissions in Beijing had a significant positive spatial correlation; forming high-high aggregation clusters dominated by the city center and major business districts and a low-low aggregation clusters dominated by the city's suburban areas. The simulation model clearly reflected the fine scale characteristics of carbon emissions, in terms of their quantity and spatial distribution. Results obtained in this study can aid relevant departments to formulate appropriate strategies for collectively guiding industrial enterprises towards carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mustardseeds发布了新的文献求助10
1秒前
czz014完成签到,获得积分10
1秒前
开朗以亦发布了新的文献求助10
3秒前
3秒前
Akim应助LL采纳,获得10
3秒前
4秒前
cghmfgh发布了新的文献求助10
7秒前
星辰大海应助nilu采纳,获得10
7秒前
Hello应助阿会采纳,获得10
8秒前
生信人完成签到 ,获得积分10
8秒前
开朗以亦完成签到,获得积分20
10秒前
11秒前
风中的谷云完成签到,获得积分10
11秒前
Ava应助小晶豆采纳,获得10
13秒前
第三人称的自己完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
20秒前
haozi王完成签到,获得积分10
20秒前
小小米发布了新的文献求助10
20秒前
飞宇发布了新的文献求助20
20秒前
22秒前
nilu发布了新的文献求助10
22秒前
天天快乐应助Guofenglei采纳,获得10
22秒前
23秒前
knight完成签到,获得积分10
23秒前
Henry给sssssnape的求助进行了留言
25秒前
26秒前
圆圈发布了新的文献求助10
27秒前
部川苦茶完成签到,获得积分10
27秒前
mustardseeds完成签到,获得积分10
27秒前
29秒前
弈yx发布了新的文献求助10
30秒前
赫如冰发布了新的文献求助10
31秒前
lily88发布了新的文献求助10
33秒前
Joshua完成签到,获得积分0
33秒前
小蘑菇应助生动的绿竹采纳,获得10
34秒前
Owen应助小晶豆采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260