Carbon emission accounting and spatial distribution of industrial entities in Beijing—Combining nighttime light data and urban functional areas

北京 环境科学 空间分布 碳纤维 分布(数学) 环境资源管理 中国 遥感 地理 计算机科学 数学 算法 复合数 数学分析 考古
作者
Xiaoyu Wang,Ying Cai,Gang Liu,Mingjie Zhang,Yuping Bai,Fan Zhang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:70: 101759-101759 被引量:32
标识
DOI:10.1016/j.ecoinf.2022.101759
摘要

Quantifying current carbon emissions their fine scale spatial distribution is necessary to improve carbon emission management, requirements, and emission reduction strategies of key industries. This study established an entity-level model to estimate carbon emissions by combining geographic information of points of interest (POIs) and nighttime light data from Beijing in 2018. The model accounted for the carbon emissions of Beijing's key entities and industries and simulated their spatial distribution. The results showed a good fit between the carbon emissions of the entities and nighttime light brightness values. The 130-m resolution of the urban carbon emission distribution data had a higher spatial simulation accuracy than that of the 1-km Open-Data inventory for anthropogenic carbon dioxide (ODIAC) data. Through the lens of urban functional areas, the average value of carbon emissions was highest in commercial areas and lowest in public management and service areas, at 78,840.11 tC/km2 and 6844.79 tC/km2, respectively. In terms of the industrial sector, the transportation industry had the highest carbon emissions, with a total of 31.86 Mt., while non-metal mining and oil and gas extraction had almost no energy consumption, with total carbon emissions of 1.38 Mt. The spatial clustering results showed that the distribution of carbon emissions in Beijing had a significant positive spatial correlation; forming high-high aggregation clusters dominated by the city center and major business districts and a low-low aggregation clusters dominated by the city's suburban areas. The simulation model clearly reflected the fine scale characteristics of carbon emissions, in terms of their quantity and spatial distribution. Results obtained in this study can aid relevant departments to formulate appropriate strategies for collectively guiding industrial enterprises towards carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
3秒前
我是站长才怪应助xg采纳,获得10
3秒前
decimalpoint完成签到 ,获得积分10
5秒前
Benliu发布了新的文献求助20
5秒前
5秒前
Carol完成签到,获得积分10
5秒前
sw98318发布了新的文献求助10
6秒前
wang1090完成签到,获得积分10
6秒前
奋斗的许婷2完成签到,获得积分10
6秒前
6秒前
7秒前
hll完成签到,获得积分20
7秒前
阳yang发布了新的文献求助10
7秒前
8秒前
wang1090发布了新的文献求助30
9秒前
呜呜呜呜完成签到,获得积分10
9秒前
9秒前
Riki发布了新的文献求助10
10秒前
88发布了新的文献求助10
10秒前
11秒前
充电宝应助zfy采纳,获得10
12秒前
sak完成签到,获得积分10
13秒前
Shuo Yang发布了新的文献求助20
13秒前
呜呜呜呜发布了新的文献求助10
13秒前
在水一方应助hhzz采纳,获得10
13秒前
旧是完成签到 ,获得积分10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
杨小胖完成签到 ,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
mm发布了新的文献求助10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
shouyu29应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808