OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 操作系统 哲学 心脏病学 系统工程
作者
Xuexue Li,Wenhui Diao,Yiqi Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:3
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jj发布了新的文献求助10
6秒前
guandada完成签到,获得积分10
7秒前
8秒前
爆米花应助虚幻的电灯胆采纳,获得10
10秒前
10秒前
10秒前
guandada发布了新的文献求助30
12秒前
14秒前
tanzhouliang发布了新的文献求助10
15秒前
祁代芙发布了新的文献求助20
15秒前
完美世界应助jj采纳,获得30
17秒前
传奇3应助tanzhouliang采纳,获得10
23秒前
25秒前
李健应助科研通管家采纳,获得10
26秒前
26秒前
打打应助科研通管家采纳,获得10
26秒前
薰硝壤应助科研通管家采纳,获得30
26秒前
26秒前
Mutsu应助科研通管家采纳,获得20
26秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
26秒前
sine_mora发布了新的文献求助10
28秒前
悦耳非笑发布了新的文献求助30
29秒前
FXe完成签到,获得积分10
36秒前
我是老大应助KoitoYuu采纳,获得10
37秒前
pcr163应助杨茉采纳,获得60
40秒前
43秒前
sine_mora完成签到,获得积分10
44秒前
45秒前
Hello应助fly the bike采纳,获得30
46秒前
46秒前
吞吞完成签到,获得积分10
47秒前
48秒前
一起看海发布了新的文献求助10
50秒前
51秒前
迷人的Jack发布了新的文献求助10
53秒前
zmxssg008完成签到,获得积分10
53秒前
KoitoYuu发布了新的文献求助10
55秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544249
捐赠科研通 2386802
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187