OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 哲学 系统工程 心脏病学 操作系统
作者
Xuexue Li,Wenhui Diao,Yongqiang Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领投的虎完成签到,获得积分10
1秒前
1秒前
子木关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
ning发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
3秒前
FashionBoy应助xiaoyaoyou351采纳,获得10
3秒前
3秒前
善学以致用应助无限麦片采纳,获得10
4秒前
哦啦啦发布了新的文献求助10
4秒前
乌苏苏发布了新的文献求助10
5秒前
三台完成签到,获得积分10
5秒前
5秒前
彭于晏发布了新的文献求助10
6秒前
lizhiqian2024发布了新的文献求助10
6秒前
LinX应助佳人琦许采纳,获得10
6秒前
今后应助花灯王子采纳,获得10
7秒前
7秒前
drchen完成签到 ,获得积分10
7秒前
7秒前
7秒前
完美世界应助lxx采纳,获得10
8秒前
xz发布了新的文献求助10
8秒前
yuxinyue发布了新的文献求助10
9秒前
9秒前
小芳芳完成签到,获得积分10
9秒前
litianyuan发布了新的文献求助10
10秒前
11秒前
yu驳回了Akim应助
11秒前
12秒前
赘婿应助刘珍荣采纳,获得10
12秒前
思源应助枫泾采纳,获得10
12秒前
CodeCraft应助彭于晏采纳,获得10
13秒前
13秒前
yy完成签到 ,获得积分10
13秒前
13秒前
Time完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410