OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 哲学 系统工程 心脏病学 操作系统
作者
Xuexue Li,Wenhui Diao,Yongqiang Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助73采纳,获得10
刚刚
3n同学完成签到 ,获得积分10
刚刚
2秒前
2秒前
Owen应助林木木采纳,获得10
2秒前
无花果应助guozizi采纳,获得30
3秒前
3秒前
lonely完成签到,获得积分10
3秒前
4秒前
含蓄的晓绿完成签到,获得积分10
5秒前
7秒前
lonely发布了新的文献求助10
7秒前
hanzhiyuxing发布了新的文献求助10
7秒前
沉醉发布了新的文献求助50
7秒前
8秒前
尼古拉斯铁柱完成签到 ,获得积分10
10秒前
啦啦啦啦啦完成签到 ,获得积分20
12秒前
坦率灵槐应助你好采纳,获得10
12秒前
CipherSage应助日尧采纳,获得10
12秒前
优娜发布了新的文献求助10
12秒前
传奇3应助奥托米洛采纳,获得10
13秒前
13秒前
mcw发布了新的文献求助20
13秒前
FashionBoy应助盛小铃采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
王家辉完成签到,获得积分10
14秒前
冷静海云完成签到,获得积分20
14秒前
16秒前
Owen应助张张张张闭嘴采纳,获得10
17秒前
1212发布了新的文献求助10
17秒前
春桑早点睡完成签到,获得积分10
18秒前
1122321发布了新的文献求助10
19秒前
20秒前
领导范儿应助魁梧的绿蕊采纳,获得10
20秒前
ding应助皮皮大王采纳,获得10
21秒前
司马飞飞完成签到,获得积分10
22秒前
张宇鑫完成签到,获得积分10
23秒前
24秒前
24秒前
华国锋完成签到,获得积分0
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632408
求助须知:如何正确求助?哪些是违规求助? 4726818
关于积分的说明 14981984
捐赠科研通 4790354
什么是DOI,文献DOI怎么找? 2558257
邀请新用户注册赠送积分活动 1518661
关于科研通互助平台的介绍 1479107