OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 哲学 系统工程 心脏病学 操作系统
作者
Xuexue Li,Wenhui Diao,Yongqiang Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨含羞草完成签到,获得积分10
刚刚
4秒前
8秒前
cpp完成签到,获得积分20
9秒前
jia雪完成签到,获得积分10
10秒前
10秒前
渠安发布了新的文献求助300
11秒前
12秒前
12秒前
领导范儿应助万万没想到采纳,获得10
15秒前
15秒前
NGU发布了新的文献求助10
15秒前
震动的宛菡完成签到 ,获得积分10
17秒前
北风歌完成签到,获得积分10
18秒前
19秒前
maggiexjl完成签到,获得积分10
19秒前
19秒前
娃娃菜妮发布了新的文献求助10
19秒前
凯凯发布了新的文献求助10
20秒前
20秒前
852应助宥沐采纳,获得10
20秒前
20秒前
Tracey16完成签到,获得积分10
20秒前
所所应助落花生采纳,获得10
22秒前
22秒前
YangHuilin发布了新的文献求助20
23秒前
24秒前
ehsl完成签到,获得积分10
24秒前
我爱小juju发布了新的文献求助10
25秒前
25秒前
领导范儿应助傲娇林采纳,获得10
26秒前
lcx发布了新的文献求助10
26秒前
Adi完成签到,获得积分10
27秒前
年轻的凝云完成签到 ,获得积分10
28秒前
29秒前
吱吱吱吱完成签到 ,获得积分10
29秒前
李孝鸿发布了新的文献求助10
29秒前
orixero应助icreat采纳,获得10
29秒前
31秒前
CYQ完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474