OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 操作系统 哲学 心脏病学 系统工程
作者
Xuexue Li,Wenhui Diao,Yongqiang Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
淡定百川发布了新的文献求助10
3秒前
3秒前
hhww完成签到,获得积分10
4秒前
热情的c99发布了新的文献求助10
6秒前
所所应助zhang005on采纳,获得10
7秒前
英俊嚓茶发布了新的文献求助10
7秒前
8秒前
8秒前
lucky应助HOXXXiii采纳,获得10
9秒前
科研通AI5应助丁丁采纳,获得10
9秒前
年华发布了新的文献求助20
9秒前
carne完成签到,获得积分10
9秒前
一一应助zzz采纳,获得30
10秒前
10秒前
11秒前
11秒前
韶安萱发布了新的文献求助10
12秒前
14秒前
Xdy完成签到,获得积分20
14秒前
周周驳回了Ava应助
14秒前
16秒前
顺利安完成签到 ,获得积分10
17秒前
HC发布了新的文献求助10
18秒前
充电宝应助宿醉采纳,获得10
18秒前
20秒前
爆米花应助寒月采纳,获得10
20秒前
星辰大海应助淡定百川采纳,获得10
20秒前
20秒前
只想毕业的混子完成签到,获得积分10
21秒前
伶俐的小白菜完成签到,获得积分10
21秒前
21秒前
22秒前
天行马发布了新的文献求助10
22秒前
oys关闭了oys文献求助
25秒前
Abi发布了新的文献求助10
25秒前
MoriZhang发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679