Implementation of number plate detection system for vehicle registration using IOT and recognition using CNN

许可证 计算机科学 人工智能 卷积神经网络 智能交通系统 分割 深度学习 光学字符识别 停车场 过程(计算) 图像处理 机器学习 模式识别(心理学) 计算机视觉 图像(数学) 工程类 土木工程 操作系统
作者
M.A. Jawale,P. William,A. B. Pawar,Nikhil Marriwala
出处
期刊:Measurement: Sensors [Elsevier]
卷期号:27: 100761-100761 被引量:40
标识
DOI:10.1016/j.measen.2023.100761
摘要

In the intelligent transportation system the automatic license plate recognition and detection plays a very important role. This application could be used for traffic control security e-payment systems in the toll pay and parking. Many algorithms have been developed to force license plate detection and recognition and all have many advantages and flaws under different situations. With the advent and rise of deep learning concepts in various fields of artificial intelligence, computer vision has developed in leaps and bounds in terms of innovations and methods. Automatic License Plate Recognition has emerged as an effective method to automate the watch keeping process for traffic systems, parking fee structures, and police surveillance. License plate recognition (LPR) is a quite used and mature technology but much work is needed to be done in order to make it perfect. In recent years, the scientific community has made major advances in methodology and performance. This paper tries to aim at summarizing and analyzing various methodologies and progress in LPR in the deep learning era using IOT sensors. Hence, in this paper, an Automatic License Plate Detection and Recognition (ALPDR) system has been proposed having four steps namely License Plate Extraction, Image Pre-processing, Character Segmentation and Character Recognition. For the first three steps (extraction, pre-processing, and segmentation), unique methods have been proposed. As the character recognition is an important step of license plate recognition and detection, four different methods for character recognition have been experimented on, which include Convolution Neural Network (CNN), MobileNet, Inception V3, ResNet 50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUJyyyy完成签到,获得积分10
刚刚
1秒前
HCLonely应助和谐的火采纳,获得10
2秒前
3秒前
4秒前
华仔应助汎影采纳,获得10
5秒前
天天快乐应助负责的方盒采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
SCI的芷蝶发布了新的文献求助10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
lifesci_ming发布了新的文献求助10
7秒前
reform发布了新的文献求助10
7秒前
8秒前
YifanWang应助坦率的跳跳糖采纳,获得10
9秒前
多喝水给多喝水的求助进行了留言
9秒前
WXF发布了新的文献求助10
13秒前
14秒前
李健的小迷弟应助汎影采纳,获得10
17秒前
17秒前
Flash发布了新的文献求助10
17秒前
夏目友人张完成签到,获得积分10
18秒前
小二郎应助WXF采纳,获得10
20秒前
如你所liao完成签到,获得积分10
21秒前
子清完成签到,获得积分0
21秒前
22秒前
I坤发布了新的文献求助10
23秒前
乐乐应助鲤鱼谷冬采纳,获得10
23秒前
24秒前
24秒前
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290446
求助须知:如何正确求助?哪些是违规求助? 2927081
关于积分的说明 8430695
捐赠科研通 2598428
什么是DOI,文献DOI怎么找? 1417889
科研通“疑难数据库(出版商)”最低求助积分说明 659929
邀请新用户注册赠送积分活动 642493