The Effect of Various Training Variables on Developing Muscle Strength in Velocity-based Training: A Systematic Review and Meta-analysis

力量训练 肌肉力量 培训(气象学) 集合(抽象数据类型) 休息(音乐) 计算机科学 荟萃分析 医学 物理医学与康复 物理疗法 物理 内科学 气象学 程序设计语言
作者
Xing Zhang,Hansen Li,Siyuan Feng,Songpeng Su
出处
期刊:International Journal of Sports Medicine [Georg Thieme Verlag KG]
卷期号:44 (12): 857-864 被引量:9
标识
DOI:10.1055/a-2095-8254
摘要

Abstract Velocity-based training is an advanced auto-regulation method that uses objective indices to dynamically regulate training loads. However, it is unclear currently how to maximize muscle strength with appropriate velocity-based training settings. To fill this gap, we conducted a series of dose-response and subgroup meta-analyses to check the effects of training variables/parameters, such as intensity, velocity loss, set, inter-set rest intervals, frequency, period, and program, on muscle strength in velocity-based training. A systematic literature search was performed to identify studies via PubMed, Web of Science, Embase, EBSCO, and Cochrane. One repetition maximum was selected as the outcome to indicate muscle strength. Eventually, twenty-seven studies with 693 trained individuals were included in the analysis. We found that the velocity loss of 15 to 30%, the intensity of 70 to 80%1RM, the set of 3 to 5 per session, the inter-set rest interval of 2 to 4 min, and the period of 7 to 12 weeks could be appropriate settings for developing muscle strength. Three periodical programming models in velocity-based training, including linear programming, undulating programming, and constant programming, were effective for developing muscle strength. Besides, changing periodical programming models around every 9 weeks may help to avoid a training plateau in strength adaption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄飞莲完成签到,获得积分10
刚刚
啊啊啊啊完成签到,获得积分10
1秒前
yuanzhilong发布了新的文献求助10
1秒前
Sea_U完成签到,获得积分0
1秒前
Jasper应助Gumiano采纳,获得10
1秒前
wanci应助嘻嘻采纳,获得10
1秒前
一样的seal完成签到,获得积分10
1秒前
陈思宏发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
三木阳子发布了新的文献求助10
3秒前
王正正完成签到,获得积分10
3秒前
曈曦完成签到 ,获得积分10
3秒前
xxx完成签到,获得积分10
3秒前
Snoval完成签到,获得积分10
3秒前
wang完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
hynni发布了新的文献求助10
4秒前
舒适的映安完成签到,获得积分10
4秒前
香蕉诗蕊应助alay采纳,获得10
4秒前
www发布了新的文献求助10
5秒前
GPTea发布了新的文献求助10
6秒前
6秒前
归海大楚完成签到,获得积分10
6秒前
爱听歌的复天完成签到,获得积分10
7秒前
Lwj完成签到,获得积分10
7秒前
7秒前
小芋完成签到,获得积分10
8秒前
8秒前
watermelon应助fff采纳,获得10
8秒前
隐形曼青应助杨张浩采纳,获得10
8秒前
8秒前
窦房结发布了新的文献求助10
8秒前
8秒前
蜗牛完成签到,获得积分10
9秒前
9秒前
Isaac完成签到,获得积分10
9秒前
素养哥完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619