The Effect of Various Training Variables on Developing Muscle Strength in Velocity-based Training: A Systematic Review and Meta-analysis

力量训练 肌肉力量 培训(气象学) 集合(抽象数据类型) 休息(音乐) 计算机科学 荟萃分析 医学 物理医学与康复 物理疗法 物理 内科学 气象学 程序设计语言
作者
Xing Zhang,Hansen Li,Siyuan Feng,Songpeng Su
出处
期刊:International Journal of Sports Medicine [Georg Thieme Verlag KG]
卷期号:44 (12): 857-864 被引量:9
标识
DOI:10.1055/a-2095-8254
摘要

Abstract Velocity-based training is an advanced auto-regulation method that uses objective indices to dynamically regulate training loads. However, it is unclear currently how to maximize muscle strength with appropriate velocity-based training settings. To fill this gap, we conducted a series of dose-response and subgroup meta-analyses to check the effects of training variables/parameters, such as intensity, velocity loss, set, inter-set rest intervals, frequency, period, and program, on muscle strength in velocity-based training. A systematic literature search was performed to identify studies via PubMed, Web of Science, Embase, EBSCO, and Cochrane. One repetition maximum was selected as the outcome to indicate muscle strength. Eventually, twenty-seven studies with 693 trained individuals were included in the analysis. We found that the velocity loss of 15 to 30%, the intensity of 70 to 80%1RM, the set of 3 to 5 per session, the inter-set rest interval of 2 to 4 min, and the period of 7 to 12 weeks could be appropriate settings for developing muscle strength. Three periodical programming models in velocity-based training, including linear programming, undulating programming, and constant programming, were effective for developing muscle strength. Besides, changing periodical programming models around every 9 weeks may help to avoid a training plateau in strength adaption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小A发布了新的文献求助10
1秒前
传奇3应助心灵美的思柔采纳,获得10
1秒前
隐形曼青应助cw采纳,获得30
1秒前
2秒前
2秒前
科研花完成签到 ,获得积分10
2秒前
3秒前
3秒前
chixueqi完成签到,获得积分10
3秒前
我是老大应助猪猪比特采纳,获得10
3秒前
Liming发布了新的文献求助10
3秒前
3秒前
清爽的初柔完成签到,获得积分10
3秒前
QY发布了新的文献求助10
3秒前
liucong046完成签到,获得积分10
3秒前
hang完成签到,获得积分10
3秒前
十七号日落完成签到 ,获得积分10
4秒前
4秒前
PEIfq发布了新的文献求助10
4秒前
4秒前
西西发布了新的文献求助10
5秒前
缝纫工发布了新的文献求助10
6秒前
6秒前
自信项链发布了新的文献求助10
6秒前
6秒前
皮皮完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
treasure发布了新的文献求助10
8秒前
xiaoshulin完成签到,获得积分10
8秒前
8秒前
充电宝应助Petrichor采纳,获得10
9秒前
lyf_cq发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274