异质结双极晶体管
降级(电信)
人工神经网络
异质结
可靠性(半导体)
材料科学
双极结晶体管
晶体管
信号(编程语言)
微波食品加热
加速老化
参数统计
电子工程
航程(航空)
遗传算法
光电子学
计算机科学
电气工程
工程类
人工智能
物理
机器学习
数学
电压
电信
功率(物理)
复合材料
量子力学
程序设计语言
统计
作者
Lin Cheng,Hongliang Lü,Silu Yan,Chen Liu,J H Qiao,Junjun Qi,Wei Cheng,Yimen Zhang,Yuming Zhang
出处
期刊:Micromachines
[Multidisciplinary Digital Publishing Institute]
日期:2023-10-30
卷期号:14 (11): 2023-2023
摘要
In this paper, an aging small-signal model for degradation prediction of microwave heterojunction bipolar transistor (HBT) S-parameters based on prior knowledge neural networks (PKNNs) is explored. A dual-extreme learning machine (D-ELM) structure with an adaptive genetic algorithm (AGA) optimization process is used to simulate the fresh S-parameters of InP HBT devices and the degradation of S-parameters after accelerated aging, respectively. In addition to the reliability parametric inputs of the original aging problem, the S-parameter degradation trend obtained from the aging small-signal equivalent circuit is used as additional information to inject into the D-ELM structure. Good agreement was achieved between measured and predicted results of the degradation of S-parameters within a frequency range of 0.1 to 40 GHz.
科研通智能强力驱动
Strongly Powered by AbleSci AI