A tandem white shark algorithm approach for optimizing drug–disease and drug–drug interactions in multimorbidity and polypharmacy

多药 药品 计算机科学 算法 疾病 遗传算法 机器学习 数学优化 人工智能 医学 药理学 数学 内科学
作者
Sultan M. Al Khatib
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105435-105435 被引量:2
标识
DOI:10.1016/j.bspc.2023.105435
摘要

Minimizing Drug–disease and drug–drug Interactions in Polypharmacy and Multimorbidity (DIPM) is a challenging problem. The challenge is caused by the large number of similar medications that can be prescribed for each disease and the adverse reactions that may be experienced by the selected medication(s) for one or more of the diseases and medications identified. Therefore, it is a selection problem as to which medication should be prescribed to the patient for each disease while maintaining the least drug–disease and drug–drug interactions. This is an optimization problem, and to the best of our knowledge, it has never been addressed before using search-based algorithms. The aims of this study are to explore and find the best performance among the employed algorithms in providing optimal or near-optimal solutions to this problem, and then to fine-tune an optimization approach to DIPM. Four algorithms are consequently employed, which are: Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and White Shark Optimization (WSO). To test the most suitable one among the algorithms, two synthetic datasets are used, representing simple and more complex problems. The results, considering only drug–disease interactions, show that GA is outperforming the others for a simple problem. However, WSO is found to outperform the others when the problem is more complex. The WSO is accordingly formed into a tandem approach, considering both drug–disease and drug–drug interactions for a real-world problem dataset. The approach indicates promising results with accuracy of (100%) for drug–drug interaction and (96.6%) for drug–disease interaction in (5.32) seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗艳一发布了新的文献求助10
刚刚
阿文完成签到,获得积分10
刚刚
刚刚
aaaaaa发布了新的文献求助10
1秒前
2秒前
hanchao完成签到,获得积分10
3秒前
May应助看风景悠然在路采纳,获得20
4秒前
5秒前
邢慧兰完成签到,获得积分10
6秒前
Harley发布了新的文献求助10
6秒前
6秒前
kyo完成签到,获得积分10
6秒前
TheDay发布了新的文献求助10
7秒前
8秒前
高求发布了新的文献求助10
8秒前
情怀应助阳光下的我们采纳,获得10
10秒前
Qingcyx发布了新的文献求助10
10秒前
11秒前
闾丘惜萱完成签到,获得积分10
11秒前
yznfly应助tmxx采纳,获得15
11秒前
12秒前
zk001发布了新的文献求助10
12秒前
yznfly应助心灵美的紫槐采纳,获得30
13秒前
kkkkkkk完成签到,获得积分10
14秒前
闾丘惜萱发布了新的文献求助10
14秒前
15秒前
Pendragon应助moonlight采纳,获得100
15秒前
kyo关闭了kyo文献求助
17秒前
18秒前
神秘人w完成签到,获得积分20
18秒前
19秒前
完美世界应助zk001采纳,获得10
19秒前
顾矜应助义气的巨人采纳,获得10
20秒前
搜集达人应助酷酷的王采纳,获得30
21秒前
21秒前
晓凡完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
lfzw完成签到,获得积分10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152