亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A tandem white shark algorithm approach for optimizing drug–disease and drug–drug interactions in multimorbidity and polypharmacy

多药 药品 计算机科学 算法 疾病 遗传算法 机器学习 数学优化 人工智能 医学 药理学 数学 内科学
作者
Sultan M. Al Khatib
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105435-105435 被引量:2
标识
DOI:10.1016/j.bspc.2023.105435
摘要

Minimizing Drug–disease and drug–drug Interactions in Polypharmacy and Multimorbidity (DIPM) is a challenging problem. The challenge is caused by the large number of similar medications that can be prescribed for each disease and the adverse reactions that may be experienced by the selected medication(s) for one or more of the diseases and medications identified. Therefore, it is a selection problem as to which medication should be prescribed to the patient for each disease while maintaining the least drug–disease and drug–drug interactions. This is an optimization problem, and to the best of our knowledge, it has never been addressed before using search-based algorithms. The aims of this study are to explore and find the best performance among the employed algorithms in providing optimal or near-optimal solutions to this problem, and then to fine-tune an optimization approach to DIPM. Four algorithms are consequently employed, which are: Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and White Shark Optimization (WSO). To test the most suitable one among the algorithms, two synthetic datasets are used, representing simple and more complex problems. The results, considering only drug–disease interactions, show that GA is outperforming the others for a simple problem. However, WSO is found to outperform the others when the problem is more complex. The WSO is accordingly formed into a tandem approach, considering both drug–disease and drug–drug interactions for a real-world problem dataset. The approach indicates promising results with accuracy of (100%) for drug–drug interaction and (96.6%) for drug–disease interaction in (5.32) seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐蛋蛋完成签到,获得积分10
1秒前
平淡的依白完成签到,获得积分20
3秒前
善学以致用应助尹恩惠采纳,获得10
5秒前
清爽夜雪发布了新的文献求助10
5秒前
5秒前
浓浓完成签到 ,获得积分10
6秒前
6秒前
6秒前
LH完成签到,获得积分10
8秒前
木卫二完成签到 ,获得积分10
8秒前
kiki发布了新的文献求助10
11秒前
吧唧吧唧发布了新的文献求助10
12秒前
13秒前
勤恳冰淇淋完成签到 ,获得积分10
16秒前
CodeCraft应助张张采纳,获得10
21秒前
22222发布了新的文献求助30
22秒前
清爽夜雪发布了新的文献求助10
23秒前
乐乐应助kiki采纳,获得10
29秒前
888发布了新的文献求助30
29秒前
甜甜的冷霜完成签到,获得积分10
30秒前
32秒前
xiaochao完成签到,获得积分10
32秒前
GingerF完成签到 ,获得积分0
36秒前
星落枝头发布了新的文献求助10
37秒前
清爽夜雪完成签到,获得积分10
38秒前
39秒前
明人不放暗屁完成签到 ,获得积分10
39秒前
科研小趴菜完成签到 ,获得积分10
40秒前
42秒前
43秒前
123456完成签到,获得积分10
44秒前
一二完成签到 ,获得积分10
46秒前
47秒前
123456发布了新的文献求助10
48秒前
科研通AI5应助机灵的成协采纳,获得10
49秒前
Bell完成签到,获得积分10
51秒前
研友_VZG7GZ应助酷炫的面包采纳,获得10
52秒前
金鱼发布了新的文献求助10
54秒前
59秒前
桐桐应助北林采纳,获得10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126569
求助须知:如何正确求助?哪些是违规求助? 4330013
关于积分的说明 13492609
捐赠科研通 4165224
什么是DOI,文献DOI怎么找? 2283306
邀请新用户注册赠送积分活动 1284279
关于科研通互助平台的介绍 1223910