A tandem white shark algorithm approach for optimizing drug–disease and drug–drug interactions in multimorbidity and polypharmacy

多药 药品 计算机科学 算法 疾病 遗传算法 机器学习 数学优化 人工智能 医学 药理学 数学 内科学
作者
Sultan M. Al Khatib
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105435-105435 被引量:1
标识
DOI:10.1016/j.bspc.2023.105435
摘要

Minimizing Drug–disease and drug–drug Interactions in Polypharmacy and Multimorbidity (DIPM) is a challenging problem. The challenge is caused by the large number of similar medications that can be prescribed for each disease and the adverse reactions that may be experienced by the selected medication(s) for one or more of the diseases and medications identified. Therefore, it is a selection problem as to which medication should be prescribed to the patient for each disease while maintaining the least drug–disease and drug–drug interactions. This is an optimization problem, and to the best of our knowledge, it has never been addressed before using search-based algorithms. The aims of this study are to explore and find the best performance among the employed algorithms in providing optimal or near-optimal solutions to this problem, and then to fine-tune an optimization approach to DIPM. Four algorithms are consequently employed, which are: Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and White Shark Optimization (WSO). To test the most suitable one among the algorithms, two synthetic datasets are used, representing simple and more complex problems. The results, considering only drug–disease interactions, show that GA is outperforming the others for a simple problem. However, WSO is found to outperform the others when the problem is more complex. The WSO is accordingly formed into a tandem approach, considering both drug–disease and drug–drug interactions for a real-world problem dataset. The approach indicates promising results with accuracy of (100%) for drug–drug interaction and (96.6%) for drug–disease interaction in (5.32) seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝莓酱完成签到,获得积分0
刚刚
万幸鹿完成签到,获得积分10
刚刚
1秒前
李静发布了新的文献求助10
1秒前
ruby完成签到,获得积分10
3秒前
4秒前
研友_VZG7GZ应助雪白起眸采纳,获得30
5秒前
5秒前
科研通AI2S应助ASZXDW采纳,获得10
5秒前
6秒前
月初完成签到,获得积分10
7秒前
7秒前
亦屿森发布了新的文献求助10
8秒前
9秒前
北极星162完成签到,获得积分10
10秒前
WKY完成签到,获得积分10
10秒前
研友_ZlqeD8完成签到,获得积分10
10秒前
加菲丰丰发布了新的文献求助10
10秒前
笨笨盼易发布了新的文献求助10
10秒前
10秒前
11秒前
美有姬完成签到,获得积分10
11秒前
11秒前
123456完成签到 ,获得积分10
11秒前
着急的一刀完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
15秒前
wwwteng呀发布了新的文献求助10
16秒前
断鸿完成签到 ,获得积分10
16秒前
17秒前
稳重雁开发布了新的文献求助10
17秒前
奥利奥完成签到,获得积分10
17秒前
飞蝗的life发布了新的文献求助10
17秒前
花生辣鱼发布了新的文献求助10
18秒前
温柔的如发布了新的文献求助20
19秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046