A tandem white shark algorithm approach for optimizing drug–disease and drug–drug interactions in multimorbidity and polypharmacy

多药 药品 计算机科学 算法 疾病 遗传算法 机器学习 数学优化 人工智能 医学 药理学 数学 内科学
作者
Sultan M. Al Khatib
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105435-105435 被引量:2
标识
DOI:10.1016/j.bspc.2023.105435
摘要

Minimizing Drug–disease and drug–drug Interactions in Polypharmacy and Multimorbidity (DIPM) is a challenging problem. The challenge is caused by the large number of similar medications that can be prescribed for each disease and the adverse reactions that may be experienced by the selected medication(s) for one or more of the diseases and medications identified. Therefore, it is a selection problem as to which medication should be prescribed to the patient for each disease while maintaining the least drug–disease and drug–drug interactions. This is an optimization problem, and to the best of our knowledge, it has never been addressed before using search-based algorithms. The aims of this study are to explore and find the best performance among the employed algorithms in providing optimal or near-optimal solutions to this problem, and then to fine-tune an optimization approach to DIPM. Four algorithms are consequently employed, which are: Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and White Shark Optimization (WSO). To test the most suitable one among the algorithms, two synthetic datasets are used, representing simple and more complex problems. The results, considering only drug–disease interactions, show that GA is outperforming the others for a simple problem. However, WSO is found to outperform the others when the problem is more complex. The WSO is accordingly formed into a tandem approach, considering both drug–disease and drug–drug interactions for a real-world problem dataset. The approach indicates promising results with accuracy of (100%) for drug–drug interaction and (96.6%) for drug–disease interaction in (5.32) seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej应助威武的夜绿采纳,获得20
刚刚
李爱国应助雪山飞龙采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
白潇潇发布了新的文献求助10
1秒前
彩虹小马发布了新的文献求助20
2秒前
紫藤完成签到,获得积分10
2秒前
2秒前
我不吃辣条完成签到,获得积分20
3秒前
penglinhua发布了新的文献求助10
3秒前
花卷发布了新的文献求助10
3秒前
4秒前
4秒前
apple红了完成签到 ,获得积分10
5秒前
CipherSage应助坦率曼寒采纳,获得10
6秒前
wanci应助丽优采纳,获得10
7秒前
8秒前
9秒前
9秒前
CHEN完成签到 ,获得积分10
10秒前
ChatGPT发布了新的文献求助10
10秒前
长风完成签到 ,获得积分10
11秒前
淡然善斓发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
今后应助潇洒的冰淇淋采纳,获得10
12秒前
脑洞疼应助penglinhua采纳,获得10
13秒前
15秒前
Jasper应助WYN采纳,获得10
15秒前
bluesiryao发布了新的文献求助10
15秒前
MAX33发布了新的文献求助10
15秒前
丽优完成签到,获得积分10
15秒前
15秒前
16秒前
钱钱完成签到,获得积分10
16秒前
科研通AI6应助www采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
yunyueqixun完成签到,获得积分10
18秒前
江J发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499