A tandem white shark algorithm approach for optimizing drug–disease and drug–drug interactions in multimorbidity and polypharmacy

多药 药品 计算机科学 算法 疾病 遗传算法 机器学习 数学优化 人工智能 医学 药理学 数学 内科学
作者
Sultan M. Al Khatib
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105435-105435 被引量:2
标识
DOI:10.1016/j.bspc.2023.105435
摘要

Minimizing Drug–disease and drug–drug Interactions in Polypharmacy and Multimorbidity (DIPM) is a challenging problem. The challenge is caused by the large number of similar medications that can be prescribed for each disease and the adverse reactions that may be experienced by the selected medication(s) for one or more of the diseases and medications identified. Therefore, it is a selection problem as to which medication should be prescribed to the patient for each disease while maintaining the least drug–disease and drug–drug interactions. This is an optimization problem, and to the best of our knowledge, it has never been addressed before using search-based algorithms. The aims of this study are to explore and find the best performance among the employed algorithms in providing optimal or near-optimal solutions to this problem, and then to fine-tune an optimization approach to DIPM. Four algorithms are consequently employed, which are: Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and White Shark Optimization (WSO). To test the most suitable one among the algorithms, two synthetic datasets are used, representing simple and more complex problems. The results, considering only drug–disease interactions, show that GA is outperforming the others for a simple problem. However, WSO is found to outperform the others when the problem is more complex. The WSO is accordingly formed into a tandem approach, considering both drug–disease and drug–drug interactions for a real-world problem dataset. The approach indicates promising results with accuracy of (100%) for drug–drug interaction and (96.6%) for drug–disease interaction in (5.32) seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助zzzwww采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
哈哈哈哈哈哈完成签到 ,获得积分10
1秒前
王楠楠完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
酷酷三问发布了新的文献求助10
4秒前
5秒前
5秒前
落后的老太完成签到,获得积分10
5秒前
chen发布了新的文献求助10
5秒前
张欣宇发布了新的文献求助10
6秒前
Abdurrahman完成签到,获得积分10
6秒前
蓝天发布了新的文献求助10
6秒前
硬币完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科研求求你嘛完成签到,获得积分10
7秒前
愉快的苑博完成签到,获得积分10
8秒前
次一口多多完成签到,获得积分10
8秒前
8秒前
xx发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
liu发布了新的文献求助10
9秒前
yordeabese完成签到,获得积分10
9秒前
Ava应助轩辕雨文采纳,获得20
9秒前
9秒前
9秒前
Shalala完成签到,获得积分10
10秒前
10秒前
Sunyidan完成签到,获得积分10
10秒前
zhangyue7777完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836