Leaf hydraulic distance is a good predictor of growth response to climate aridity within and across conifer species in a Taiga ecosystem

常绿 泰加语 每年落叶的 干旱 生物群落 生态系统 生态学 生物 环境科学 北方的 通才与专种 栖息地
作者
Xingyue Li,Dayong Fan,Zhengxiao Liu,Zengjuan Fu,Changqing Gan,Zeyu Lin,Chengyang Xu,Han Sun,Xiangping Wang
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:342: 109710-109710 被引量:3
标识
DOI:10.1016/j.agrformet.2023.109710
摘要

Despite inter-specific differences in hydraulic traits at broad scale have been comprehensively studied, intra-specific hydraulic variability in situ is less well known. Which hydraulic traits can better predict whole-plant performance in field both within and across species remains largely ambiguous. In the study, we conducted a field investigation on branch radial growth, leaf and branch anatomical traits related to hydraulics, as well as leaf pressure–volume curve parameters of two dominant conifer species (Larix sibirica and Picea obovata) at four sites over an aridity gradient across the Altay Mountain range, which locates at the southern edge of Taiga ecosystem, one of the largest and the most sensitive terrestrial biomes to climate change. L. sibirica is a generalist deciduous conifer species, while P. obovata is a specialist evergreen conifer species. It was found that: 1) P. obovata showed ten times higher slope of branch radial growth (RGRbranch) fitted to aridity than L. sibirica; 2) the hydraulic distance from the bundle sheath to the stomata (DMC) can predict the growth rate both within and across species; 3) earlywood and latewood anatomies showed different relations to RGRbranch within and across species; 4) leaf saturated osmotic potential (Ψsat) but not turgor loss osmotic potential (Ψtlp) was significantly and positively related to RGRbranch within species. Our results support the hypothesis that specialists are more sensitive in growth to climate change than generalists. Further, the results highlight DMC as a pivotal role in water transport and associated carbon assimilation both within and across species in Taiga ecosystem, therefore at the core of the structural adjustments to climate change in this largest and the most sensitive terrestrial biome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiadu发布了新的文献求助10
1秒前
Lsy完成签到,获得积分10
1秒前
1秒前
1秒前
4秒前
马子妍发布了新的文献求助10
4秒前
隐形曼青应助粥mi采纳,获得10
5秒前
天天完成签到 ,获得积分10
6秒前
XIEQ完成签到,获得积分10
7秒前
酷波er应助Yuchaoo采纳,获得10
7秒前
微微发布了新的文献求助20
7秒前
老衲发布了新的文献求助10
7秒前
phil发布了新的文献求助10
7秒前
七七完成签到,获得积分10
8秒前
体贴怜翠发布了新的文献求助10
8秒前
小白应助XIEQ采纳,获得10
10秒前
11秒前
14秒前
woobinhua完成签到,获得积分10
14秒前
今后应助brianzk1989采纳,获得10
14秒前
vv发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
沙砾完成签到,获得积分10
18秒前
MA发布了新的文献求助10
19秒前
19秒前
孤独绮梅完成签到 ,获得积分10
20秒前
21秒前
小白应助XIEQ采纳,获得10
21秒前
猪猪hero应助含辰惜采纳,获得10
21秒前
21秒前
12发布了新的文献求助10
22秒前
无极微光应助1454727550采纳,获得20
22秒前
jinzhen发布了新的文献求助10
22秒前
23秒前
猪小猪发布了新的文献求助10
23秒前
23秒前
23秒前
番番完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132