Mechanism-Guided Catalyst Design for CO2 Hydrogenation to Formate and Methanol

甲酸 催化作用 格式化 甲醇 甲酸甲酯 化学 反应机理 合理设计 材料科学 组合化学 纳米技术 化学工程 有机化学 工程类
作者
Kyungho Lee,Hao Yan,Qiming Sun,Zhenhua Zhang,Ning Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 746-757 被引量:11
标识
DOI:10.1021/accountsmr.3c00075
摘要

ConspectusCO2 to formate/formic acid and methanol has emerged as a promising method for utilizing CO2 in chemical and fuel synthesis, as well as reducing CO2 emissions when H2 is produced through renewable energy sources. This reaction requires the activation of two chemically distinct molecules, CO2 and H2, along with the selective formation of the desired product. Creating efficient catalysts that surpass the limitations of existing catalysts remains a significant challenge. Historically, the development of catalysts has largely depended on trial and error until successful outcomes are achieved. However, recent advances in material synthesis for well-defined structures, reaction kinetics analysis, in situ characterization techniques, and computational studies have facilitated a systematic understanding of catalytic reactions and enabled mechanism-guided catalyst development. This innovative approach has empowered researchers to strategically design effective catalysts that optimize the target reaction, particularly the rate-determining step, while tackling other limitations, such as selectivity and stability.This Account provides an overview of our recent efforts in catalyst development for CO2 hydrogenation through mechanism-guided engineering, which are primarily divided into two sections: (i) formic acid/formate and (ii) methanol production. For the CO2 hydrogenation to formate/formic acid, we first discuss the structure–activity correlation studies of various metal/support catalyst systems, including different metal particle sizes, types of support, and crystalline morphologies of the support. These studies highlight the crucial role of electron-rich metal sites for H2 splitting and an adequate number of weak basic sites for CO2 activation, which inform the design of improved catalysts with unique architectures. Notably, encapsulated metal cluster catalysts enhance the utilization of metal species and optimize the synergistic interaction between metal active sites and the support material. The encapsulation strategy can also be applied to inexpensive metal elements such as Ni, facilitating the development of highly efficient catalysts.Our primary focus for CO2-to-methanol catalysts is the design of active and durable oxide-based catalysts. We first identify that the critical limitation of metal oxide catalysts is their poor H2 activation capability, based on a comprehensive review of classical and state-of-the-art understanding of the CO2-to-methanol catalysts. Consequently, the principal catalyst design concept involves coupling metal promoters, which provide high H2 activation functionality, with metal oxide catalysts that enable the adsorption of CO2 and selective methanol synthesis. An essential synthetic approach is the doping of metal promoters on the surface of oxide catalysts. Specifically, atomically dispersed metal promoters significantly improve methanol yield by maximizing interfacial synergy with the oxide catalyst. A remarkable strategy is the incorporation of a hydrogen dispenser, such as conductive carbon, between the metal promoter and the oxide catalyst. This multicomponent composite dramatically enhances hydrogen delivery from metal sites to active sites via long-range hydrogen spillover, resulting in accelerated methanol synthesis. The approach overcomes the limitation of conventional metal/oxide systems, which constrain hydrogen movement across the surface of the oxide catalyst. We conclude by discussing the underlying implications of these observations and offering perspectives on future research and development opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ziqiao完成签到,获得积分10
刚刚
顺利的雨灵完成签到,获得积分10
1秒前
2秒前
dingyanxia完成签到,获得积分10
2秒前
酷波er应助李鑫彤采纳,获得10
2秒前
斯文败类应助科研人采纳,获得10
3秒前
3秒前
4秒前
猪多要求发布了新的文献求助10
4秒前
华仔应助落寞语薇采纳,获得10
4秒前
4秒前
小冉发布了新的文献求助10
5秒前
5秒前
6秒前
青椒肉丝发布了新的文献求助10
7秒前
种草匠完成签到,获得积分10
7秒前
Hey发布了新的文献求助10
8秒前
领导范儿应助有热心愿意采纳,获得10
8秒前
勤恳易真发布了新的文献求助10
8秒前
ASYA发布了新的文献求助10
9秒前
南兮完成签到,获得积分10
9秒前
lg20010419完成签到,获得积分10
9秒前
子凯完成签到,获得积分10
9秒前
10秒前
11秒前
诸葛翼德完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
CodeCraft应助zsxml采纳,获得10
14秒前
14秒前
minr发布了新的文献求助10
15秒前
15秒前
beikeyy发布了新的文献求助10
15秒前
猫毛发布了新的文献求助10
16秒前
埮埮完成签到,获得积分10
16秒前
hhhh完成签到 ,获得积分10
16秒前
科目三应助加百莉采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663