亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mechanism-Guided Catalyst Design for CO2 Hydrogenation to Formate and Methanol

甲酸 催化作用 格式化 甲醇 甲酸甲酯 化学 反应机理 合理设计 材料科学 组合化学 纳米技术 化学工程 有机化学 工程类
作者
Kyungho Lee,Hao Yan,Qiming Sun,Zhenhua Zhang,Ning Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 746-757 被引量:42
标识
DOI:10.1021/accountsmr.3c00075
摘要

ConspectusCO2 to formate/formic acid and methanol has emerged as a promising method for utilizing CO2 in chemical and fuel synthesis, as well as reducing CO2 emissions when H2 is produced through renewable energy sources. This reaction requires the activation of two chemically distinct molecules, CO2 and H2, along with the selective formation of the desired product. Creating efficient catalysts that surpass the limitations of existing catalysts remains a significant challenge. Historically, the development of catalysts has largely depended on trial and error until successful outcomes are achieved. However, recent advances in material synthesis for well-defined structures, reaction kinetics analysis, in situ characterization techniques, and computational studies have facilitated a systematic understanding of catalytic reactions and enabled mechanism-guided catalyst development. This innovative approach has empowered researchers to strategically design effective catalysts that optimize the target reaction, particularly the rate-determining step, while tackling other limitations, such as selectivity and stability.This Account provides an overview of our recent efforts in catalyst development for CO2 hydrogenation through mechanism-guided engineering, which are primarily divided into two sections: (i) formic acid/formate and (ii) methanol production. For the CO2 hydrogenation to formate/formic acid, we first discuss the structure–activity correlation studies of various metal/support catalyst systems, including different metal particle sizes, types of support, and crystalline morphologies of the support. These studies highlight the crucial role of electron-rich metal sites for H2 splitting and an adequate number of weak basic sites for CO2 activation, which inform the design of improved catalysts with unique architectures. Notably, encapsulated metal cluster catalysts enhance the utilization of metal species and optimize the synergistic interaction between metal active sites and the support material. The encapsulation strategy can also be applied to inexpensive metal elements such as Ni, facilitating the development of highly efficient catalysts.Our primary focus for CO2-to-methanol catalysts is the design of active and durable oxide-based catalysts. We first identify that the critical limitation of metal oxide catalysts is their poor H2 activation capability, based on a comprehensive review of classical and state-of-the-art understanding of the CO2-to-methanol catalysts. Consequently, the principal catalyst design concept involves coupling metal promoters, which provide high H2 activation functionality, with metal oxide catalysts that enable the adsorption of CO2 and selective methanol synthesis. An essential synthetic approach is the doping of metal promoters on the surface of oxide catalysts. Specifically, atomically dispersed metal promoters significantly improve methanol yield by maximizing interfacial synergy with the oxide catalyst. A remarkable strategy is the incorporation of a hydrogen dispenser, such as conductive carbon, between the metal promoter and the oxide catalyst. This multicomponent composite dramatically enhances hydrogen delivery from metal sites to active sites via long-range hydrogen spillover, resulting in accelerated methanol synthesis. The approach overcomes the limitation of conventional metal/oxide systems, which constrain hydrogen movement across the surface of the oxide catalyst. We conclude by discussing the underlying implications of these observations and offering perspectives on future research and development opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和气生财君完成签到 ,获得积分10
3秒前
sunny完成签到 ,获得积分10
7秒前
orixero应助高源伯采纳,获得10
29秒前
30秒前
35秒前
合适寄松发布了新的文献求助20
35秒前
大yo知闲闲完成签到 ,获得积分10
36秒前
高源伯发布了新的文献求助10
41秒前
财路通八方完成签到 ,获得积分10
41秒前
昔黎完成签到 ,获得积分10
43秒前
maprang完成签到,获得积分10
45秒前
48秒前
shaylie完成签到 ,获得积分10
53秒前
zzz发布了新的文献求助10
53秒前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得30
1分钟前
LLL完成签到 ,获得积分10
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
碗在水中央完成签到 ,获得积分10
1分钟前
安详的惜梦完成签到,获得积分20
1分钟前
Akim应助开心雅寒采纳,获得10
1分钟前
清脆沛山发布了新的文献求助30
1分钟前
1分钟前
开心雅寒发布了新的文献求助10
1分钟前
national完成签到,获得积分10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
开心雅寒完成签到,获得积分10
1分钟前
Blue完成签到 ,获得积分10
1分钟前
2分钟前
national发布了新的文献求助10
2分钟前
王丹靖完成签到 ,获得积分10
2分钟前
我爱读文献完成签到,获得积分10
2分钟前
迷路擎宇发布了新的文献求助10
2分钟前
磊少完成签到,获得积分10
2分钟前
迷路擎宇完成签到,获得积分20
2分钟前
NexusExplorer应助尊敬的臻采纳,获得10
2分钟前
2分钟前
YUEER发布了新的文献求助10
2分钟前
三年三班三井寿完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880437
求助须知:如何正确求助?哪些是违规求助? 6572351
关于积分的说明 15689876
捐赠科研通 5000124
什么是DOI,文献DOI怎么找? 2694209
邀请新用户注册赠送积分活动 1636018
关于科研通互助平台的介绍 1593447