Mechanism-Guided Catalyst Design for CO2 Hydrogenation to Formate and Methanol

甲酸 催化作用 格式化 甲醇 甲酸甲酯 化学 反应机理 合理设计 材料科学 组合化学 纳米技术 化学工程 有机化学 工程类
作者
Kyungho Lee,Hao Yan,Qiming Sun,Zhenhua Zhang,Ning Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 746-757 被引量:16
标识
DOI:10.1021/accountsmr.3c00075
摘要

ConspectusCO2 to formate/formic acid and methanol has emerged as a promising method for utilizing CO2 in chemical and fuel synthesis, as well as reducing CO2 emissions when H2 is produced through renewable energy sources. This reaction requires the activation of two chemically distinct molecules, CO2 and H2, along with the selective formation of the desired product. Creating efficient catalysts that surpass the limitations of existing catalysts remains a significant challenge. Historically, the development of catalysts has largely depended on trial and error until successful outcomes are achieved. However, recent advances in material synthesis for well-defined structures, reaction kinetics analysis, in situ characterization techniques, and computational studies have facilitated a systematic understanding of catalytic reactions and enabled mechanism-guided catalyst development. This innovative approach has empowered researchers to strategically design effective catalysts that optimize the target reaction, particularly the rate-determining step, while tackling other limitations, such as selectivity and stability.This Account provides an overview of our recent efforts in catalyst development for CO2 hydrogenation through mechanism-guided engineering, which are primarily divided into two sections: (i) formic acid/formate and (ii) methanol production. For the CO2 hydrogenation to formate/formic acid, we first discuss the structure–activity correlation studies of various metal/support catalyst systems, including different metal particle sizes, types of support, and crystalline morphologies of the support. These studies highlight the crucial role of electron-rich metal sites for H2 splitting and an adequate number of weak basic sites for CO2 activation, which inform the design of improved catalysts with unique architectures. Notably, encapsulated metal cluster catalysts enhance the utilization of metal species and optimize the synergistic interaction between metal active sites and the support material. The encapsulation strategy can also be applied to inexpensive metal elements such as Ni, facilitating the development of highly efficient catalysts.Our primary focus for CO2-to-methanol catalysts is the design of active and durable oxide-based catalysts. We first identify that the critical limitation of metal oxide catalysts is their poor H2 activation capability, based on a comprehensive review of classical and state-of-the-art understanding of the CO2-to-methanol catalysts. Consequently, the principal catalyst design concept involves coupling metal promoters, which provide high H2 activation functionality, with metal oxide catalysts that enable the adsorption of CO2 and selective methanol synthesis. An essential synthetic approach is the doping of metal promoters on the surface of oxide catalysts. Specifically, atomically dispersed metal promoters significantly improve methanol yield by maximizing interfacial synergy with the oxide catalyst. A remarkable strategy is the incorporation of a hydrogen dispenser, such as conductive carbon, between the metal promoter and the oxide catalyst. This multicomponent composite dramatically enhances hydrogen delivery from metal sites to active sites via long-range hydrogen spillover, resulting in accelerated methanol synthesis. The approach overcomes the limitation of conventional metal/oxide systems, which constrain hydrogen movement across the surface of the oxide catalyst. We conclude by discussing the underlying implications of these observations and offering perspectives on future research and development opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
聂立双发布了新的文献求助10
刚刚
烟花应助还不错采纳,获得10
1秒前
威武鞅完成签到,获得积分10
1秒前
lswhyr发布了新的文献求助10
1秒前
123by完成签到,获得积分10
1秒前
coolkid应助小汇报采纳,获得10
1秒前
闫佳美发布了新的文献求助10
1秒前
生动曼冬完成签到,获得积分10
1秒前
1秒前
kuangki发布了新的文献求助10
1秒前
1秒前
隐形曼青应助简称王采纳,获得10
2秒前
2秒前
糟糕的梨愁完成签到,获得积分20
3秒前
Ava应助青青草采纳,获得10
3秒前
perfect完成签到 ,获得积分10
3秒前
yuzhi发布了新的文献求助10
5秒前
xiaoyu完成签到,获得积分10
5秒前
gongweiliu完成签到 ,获得积分10
6秒前
博超完成签到,获得积分10
6秒前
LIUJC完成签到,获得积分10
6秒前
6秒前
迷路采珊完成签到,获得积分10
6秒前
Singularity应助苏乘风采纳,获得40
7秒前
FashionBoy应助于鑫采纳,获得10
7秒前
www关闭了www文献求助
7秒前
cxj完成签到,获得积分10
7秒前
redking发布了新的文献求助10
7秒前
8秒前
我们围坐篝火完成签到,获得积分10
8秒前
还不错完成签到,获得积分20
8秒前
研学弟完成签到,获得积分10
9秒前
淡然的雨双完成签到,获得积分10
10秒前
心灵美的抽屉完成签到,获得积分10
10秒前
10秒前
京城世界完成签到,获得积分10
11秒前
11秒前
暴躁汉堡完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904