已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mechanism-Guided Catalyst Design for CO2 Hydrogenation to Formate and Methanol

甲酸 催化作用 格式化 甲醇 甲酸甲酯 化学 反应机理 合理设计 材料科学 组合化学 纳米技术 化学工程 有机化学 工程类
作者
Kyungho Lee,Hao Yan,Qiming Sun,Zhenhua Zhang,Ning Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 746-757 被引量:22
标识
DOI:10.1021/accountsmr.3c00075
摘要

ConspectusCO2 to formate/formic acid and methanol has emerged as a promising method for utilizing CO2 in chemical and fuel synthesis, as well as reducing CO2 emissions when H2 is produced through renewable energy sources. This reaction requires the activation of two chemically distinct molecules, CO2 and H2, along with the selective formation of the desired product. Creating efficient catalysts that surpass the limitations of existing catalysts remains a significant challenge. Historically, the development of catalysts has largely depended on trial and error until successful outcomes are achieved. However, recent advances in material synthesis for well-defined structures, reaction kinetics analysis, in situ characterization techniques, and computational studies have facilitated a systematic understanding of catalytic reactions and enabled mechanism-guided catalyst development. This innovative approach has empowered researchers to strategically design effective catalysts that optimize the target reaction, particularly the rate-determining step, while tackling other limitations, such as selectivity and stability.This Account provides an overview of our recent efforts in catalyst development for CO2 hydrogenation through mechanism-guided engineering, which are primarily divided into two sections: (i) formic acid/formate and (ii) methanol production. For the CO2 hydrogenation to formate/formic acid, we first discuss the structure–activity correlation studies of various metal/support catalyst systems, including different metal particle sizes, types of support, and crystalline morphologies of the support. These studies highlight the crucial role of electron-rich metal sites for H2 splitting and an adequate number of weak basic sites for CO2 activation, which inform the design of improved catalysts with unique architectures. Notably, encapsulated metal cluster catalysts enhance the utilization of metal species and optimize the synergistic interaction between metal active sites and the support material. The encapsulation strategy can also be applied to inexpensive metal elements such as Ni, facilitating the development of highly efficient catalysts.Our primary focus for CO2-to-methanol catalysts is the design of active and durable oxide-based catalysts. We first identify that the critical limitation of metal oxide catalysts is their poor H2 activation capability, based on a comprehensive review of classical and state-of-the-art understanding of the CO2-to-methanol catalysts. Consequently, the principal catalyst design concept involves coupling metal promoters, which provide high H2 activation functionality, with metal oxide catalysts that enable the adsorption of CO2 and selective methanol synthesis. An essential synthetic approach is the doping of metal promoters on the surface of oxide catalysts. Specifically, atomically dispersed metal promoters significantly improve methanol yield by maximizing interfacial synergy with the oxide catalyst. A remarkable strategy is the incorporation of a hydrogen dispenser, such as conductive carbon, between the metal promoter and the oxide catalyst. This multicomponent composite dramatically enhances hydrogen delivery from metal sites to active sites via long-range hydrogen spillover, resulting in accelerated methanol synthesis. The approach overcomes the limitation of conventional metal/oxide systems, which constrain hydrogen movement across the surface of the oxide catalyst. We conclude by discussing the underlying implications of these observations and offering perspectives on future research and development opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素曼岚关注了科研通微信公众号
1秒前
Akim应助zhangsenbing采纳,获得20
3秒前
5秒前
风中小刺猬完成签到,获得积分10
5秒前
7秒前
情怀应助番茄酱采纳,获得10
7秒前
8秒前
yuanzhilong发布了新的文献求助10
9秒前
9秒前
所所应助封芷采纳,获得10
10秒前
阿狸贱贱发布了新的文献求助10
11秒前
feedyoursoul完成签到 ,获得积分10
11秒前
情怀应助zyx采纳,获得10
11秒前
科研通AI5应助半_采纳,获得10
14秒前
上官若男应助小老板采纳,获得10
14秒前
YYY完成签到 ,获得积分10
17秒前
零几年完成签到,获得积分10
19秒前
Tanyang完成签到 ,获得积分10
20秒前
21秒前
21秒前
22秒前
隐形曼青应助沐梓采纳,获得50
23秒前
24秒前
ZJX应助Yimei采纳,获得10
24秒前
haha完成签到 ,获得积分10
25秒前
斯文的慕蕊完成签到 ,获得积分10
25秒前
小老板发布了新的文献求助10
26秒前
朴素曼岚发布了新的文献求助10
26秒前
29秒前
何1完成签到 ,获得积分10
30秒前
31秒前
积雪完成签到 ,获得积分10
32秒前
32秒前
nenoaowu发布了新的文献求助10
33秒前
academician发布了新的文献求助10
35秒前
杨亚轩完成签到,获得积分10
37秒前
39秒前
神唐1发布了新的文献求助10
39秒前
科目三应助黎明森采纳,获得10
39秒前
蚌埠住不了完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396