Mechanism-Guided Catalyst Design for CO2 Hydrogenation to Formate and Methanol

甲酸 催化作用 格式化 甲醇 甲酸甲酯 化学 反应机理 合理设计 材料科学 组合化学 纳米技术 化学工程 有机化学 工程类
作者
Kyungho Lee,Hao Yan,Qiming Sun,Zhenhua Zhang,Ning Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 746-757 被引量:42
标识
DOI:10.1021/accountsmr.3c00075
摘要

ConspectusCO2 to formate/formic acid and methanol has emerged as a promising method for utilizing CO2 in chemical and fuel synthesis, as well as reducing CO2 emissions when H2 is produced through renewable energy sources. This reaction requires the activation of two chemically distinct molecules, CO2 and H2, along with the selective formation of the desired product. Creating efficient catalysts that surpass the limitations of existing catalysts remains a significant challenge. Historically, the development of catalysts has largely depended on trial and error until successful outcomes are achieved. However, recent advances in material synthesis for well-defined structures, reaction kinetics analysis, in situ characterization techniques, and computational studies have facilitated a systematic understanding of catalytic reactions and enabled mechanism-guided catalyst development. This innovative approach has empowered researchers to strategically design effective catalysts that optimize the target reaction, particularly the rate-determining step, while tackling other limitations, such as selectivity and stability.This Account provides an overview of our recent efforts in catalyst development for CO2 hydrogenation through mechanism-guided engineering, which are primarily divided into two sections: (i) formic acid/formate and (ii) methanol production. For the CO2 hydrogenation to formate/formic acid, we first discuss the structure–activity correlation studies of various metal/support catalyst systems, including different metal particle sizes, types of support, and crystalline morphologies of the support. These studies highlight the crucial role of electron-rich metal sites for H2 splitting and an adequate number of weak basic sites for CO2 activation, which inform the design of improved catalysts with unique architectures. Notably, encapsulated metal cluster catalysts enhance the utilization of metal species and optimize the synergistic interaction between metal active sites and the support material. The encapsulation strategy can also be applied to inexpensive metal elements such as Ni, facilitating the development of highly efficient catalysts.Our primary focus for CO2-to-methanol catalysts is the design of active and durable oxide-based catalysts. We first identify that the critical limitation of metal oxide catalysts is their poor H2 activation capability, based on a comprehensive review of classical and state-of-the-art understanding of the CO2-to-methanol catalysts. Consequently, the principal catalyst design concept involves coupling metal promoters, which provide high H2 activation functionality, with metal oxide catalysts that enable the adsorption of CO2 and selective methanol synthesis. An essential synthetic approach is the doping of metal promoters on the surface of oxide catalysts. Specifically, atomically dispersed metal promoters significantly improve methanol yield by maximizing interfacial synergy with the oxide catalyst. A remarkable strategy is the incorporation of a hydrogen dispenser, such as conductive carbon, between the metal promoter and the oxide catalyst. This multicomponent composite dramatically enhances hydrogen delivery from metal sites to active sites via long-range hydrogen spillover, resulting in accelerated methanol synthesis. The approach overcomes the limitation of conventional metal/oxide systems, which constrain hydrogen movement across the surface of the oxide catalyst. We conclude by discussing the underlying implications of these observations and offering perspectives on future research and development opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Rochmannn完成签到,获得积分10
2秒前
内向秋寒发布了新的文献求助10
4秒前
5秒前
nekoz发布了新的文献求助10
5秒前
水雾发布了新的文献求助10
6秒前
7秒前
张六六完成签到,获得积分10
8秒前
8秒前
Lee完成签到 ,获得积分10
10秒前
蓝天应助niko采纳,获得10
11秒前
愉快天亦发布了新的文献求助10
12秒前
zhanlan发布了新的文献求助10
13秒前
Aries完成签到,获得积分20
13秒前
勤奋橘子完成签到,获得积分10
14秒前
SciGPT应助leiyuekai采纳,获得10
14秒前
15秒前
缓慢凤凰发布了新的文献求助10
15秒前
烟花应助香菜头采纳,获得30
17秒前
量子星尘发布了新的文献求助10
18秒前
wanci应助zzh采纳,获得10
19秒前
20秒前
天天快乐应助落日出逃采纳,获得10
21秒前
赵永刚完成签到,获得积分10
21秒前
Aries关注了科研通微信公众号
21秒前
阿杰完成签到,获得积分10
22秒前
柒染完成签到 ,获得积分10
24秒前
小天完成签到 ,获得积分10
25秒前
26秒前
CR7应助李嘉图采纳,获得20
26秒前
我是老大应助曹博盛采纳,获得30
27秒前
小天关注了科研通微信公众号
28秒前
hao发布了新的文献求助10
29秒前
huangman完成签到,获得积分10
31秒前
32秒前
wz完成签到,获得积分10
34秒前
之组长了完成签到 ,获得积分10
34秒前
35秒前
苏世完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707