A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN

随机性 能量(信号处理) 特征(语言学) 计算机科学 联轴节(管道) 人工神经网络 模式识别(心理学) 期限(时间) 人工智能 过程(计算) 像素 算法 数据挖掘 工程类 数学 统计 机械工程 哲学 语言学 物理 量子力学 操作系统
作者
Ké Li,Yuchen Mu,Fan Yang,Haiyang Wang,Yinfei Yan,Yongzhe Kang
出处
期刊:Applied Energy [Elsevier]
卷期号:351: 121823-121823 被引量:10
标识
DOI:10.1016/j.apenergy.2023.121823
摘要

Integrated energy system (IES) is an important way for energy structure transition and development. Considering the characteristics of large data volume, strong randomness, and multi-energy coupling of IES, this paper proposes a novel short-term multi-energy load forecasting method for IES based on feature separation-fusion technology and improved CNN. Firstly, based on the distribution pattern of pixels in static images, the irregular multi-energy load is reconstructed into 3D load pixel matrix, giving them certain correlation features in both horizontal and vertical directions respectively. Secondly, the feature separation-fusion technology is employed to differentially process distinct features based on their information value differences. Finally, the extracted features are combined and input into a multi-task learning framework with BiLSTM as the shared layer. The hard parameter sharing mechanism is employed to learn the IES multi-coupling information and extract temporal characteristics of the load sequence through BiLSTM. In particular, three different structures of fully connected neural network are designed as feature interpretation modules to accommodate the different prediction requirements of various loads. The simulation results show that the proposed model achieves a weighted mean accuracy of 98.01% during winter days, with an average standard deviation of relative error as low as 0.0242. Among all the contrast models, it exhibits better prediction accuracy and stable error distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赤侯完成签到,获得积分10
1秒前
Owen应助京客家采纳,获得10
2秒前
健壮的尔烟完成签到 ,获得积分10
2秒前
baocq完成签到,获得积分10
3秒前
锅包肉发布了新的文献求助10
4秒前
暴躁小兔发布了新的文献求助10
4秒前
ppppp完成签到,获得积分20
4秒前
coldspringhao完成签到,获得积分10
5秒前
dxd500874关注了科研通微信公众号
6秒前
7秒前
xz完成签到,获得积分10
9秒前
rebeccahu应助潇洒莞采纳,获得10
10秒前
妖娆的菊花完成签到,获得积分10
10秒前
杨志坚完成签到 ,获得积分10
11秒前
12秒前
Dawn2000完成签到,获得积分10
14秒前
15秒前
15秒前
大个应助alice采纳,获得10
16秒前
16秒前
ZYC发布了新的文献求助10
17秒前
tao发布了新的文献求助10
19秒前
20秒前
王杰发布了新的文献求助10
20秒前
董文迪发布了新的文献求助10
21秒前
21秒前
21秒前
zzzsss完成签到,获得积分10
21秒前
22秒前
23秒前
深情安青应助小新采纳,获得30
23秒前
王云云完成签到 ,获得积分10
24秒前
Pig-prodigy完成签到,获得积分10
24秒前
璀璨的饺子完成签到 ,获得积分10
24秒前
Jasper应助科研通管家采纳,获得30
25秒前
所所应助科研通管家采纳,获得10
25秒前
劲秉应助科研通管家采纳,获得30
25秒前
pcr163应助科研通管家采纳,获得100
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460768
求助须知:如何正确求助?哪些是违规求助? 3054744
关于积分的说明 9044358
捐赠科研通 2744477
什么是DOI,文献DOI怎么找? 1505584
科研通“疑难数据库(出版商)”最低求助积分说明 695743
邀请新用户注册赠送积分活动 695063