已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

(Invited) Two-Dimensional Neuromorphic Computing Materials and Devices

神经形态工程学 计算机科学 记忆电阻器 冯·诺依曼建筑 逻辑门 控制重构 晶体管 人工神经网络 非常规计算 材料科学 电子工程 人工智能 电气工程 工程类 电压 算法 嵌入式系统 操作系统
作者
Mark C. Hersam
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (13): 1317-1317
标识
DOI:10.1149/ma2023-01131317mtgabs
摘要

The exponentially improving performance of digital computers has recently slowed due to the speed and power consumption issues resulting from the von Neumann bottleneck. In contrast, neuromorphic computing aims to circumvent these limitations by spatially co-locating logic and memory. Beyond reducing power consumption, neuromorphic devices provide efficient architectures for image recognition, machine learning, and artificial intelligence [1]. This talk will explore how two-dimensional (2D) nanoelectronic materials enable gate-tunable neuromorphic devices [2]. For example, by utilizing self-aligned, atomically thin heterojunctions, dual-gated Gaussian transistors have been realized, which show tunable anti-ambipolarity for artificial neurons, competitive learning, spiking circuits, and mixed-kernel support vector machines [3]. In addition, field-driven defect motion in polycrystalline monolayer MoS 2 enables gate-tunable memristive phenomena that serve as the basis of hybrid memristor/transistor devices (i.e., 'memtransistors' [4]) that concurrently provide logic and data storage functions [5]. The planar geometry of memtransistors further allows multiple contacts and dual gating that mimic the behavior of biological systems such as heterosynaptic responses [6]. Moreover, control over polycrystalline grain structure enhances the tunability of potentiation and depression, which enables unsupervised continuous learning in spiking neural networks [7]. Overall, this work introduces foundational circuit elements for neuromorphic computing by utilizing the unique quantum characteristics of 2D nanoelectronic materials [8]. [1] V. K. Sangwan, et al. , Nature Nanotechnology, 15 , 517 (2020). [2] M. E. Beck, et al. , ACS Nano , 14 , 6498 (2020). [3] M. E. Beck, et al. , Nature Communications , 11 , 1565 (2020). [4] V. K. Sangwan, et al. , Nature , 554 , 500 (2018). [5] X. Yan, et al. , Advanced Materials , 34 , 2108025 (2022). [6] H.-S. Lee, et al. , Advanced Functional Materials , 30 , 2003683 (2020). [7] J. Yuan, et al. , Nano Letters , 21 , 6432 (2021). [8] X. Liu, et al. , Nature Reviews Materials , 4 , 669 (2019).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
Yu发布了新的文献求助10
4秒前
6秒前
6秒前
朱子涵完成签到,获得积分10
7秒前
华仔应助huamo采纳,获得10
7秒前
俭朴大碗发布了新的文献求助10
7秒前
zzzz完成签到,获得积分10
9秒前
奥特斌完成签到 ,获得积分10
10秒前
飞飞发布了新的文献求助10
10秒前
深情安青应助barry采纳,获得10
13秒前
13秒前
藤椒辣鱼应助科研通管家采纳,获得30
20秒前
嘻哈hang应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
搜集达人应助ABC采纳,获得30
22秒前
CipherSage应助野性的胡萝卜采纳,获得10
22秒前
受伤问凝完成签到 ,获得积分10
23秒前
苗修杰完成签到,获得积分10
23秒前
执念完成签到 ,获得积分10
25秒前
max完成签到,获得积分10
25秒前
JamesPei应助tmxx采纳,获得10
25秒前
知夏完成签到,获得积分10
26秒前
26秒前
26秒前
酷波er应助张Z采纳,获得10
27秒前
qqq完成签到 ,获得积分10
27秒前
高山流水完成签到,获得积分10
28秒前
曹文鹏完成签到 ,获得积分10
30秒前
从容的怀柔完成签到,获得积分20
31秒前
barry发布了新的文献求助10
31秒前
陈_Ccc完成签到 ,获得积分10
32秒前
老才完成签到 ,获得积分10
32秒前
33秒前
33秒前
在水一方应助feng采纳,获得10
33秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466698
求助须知:如何正确求助?哪些是违规求助? 3059487
关于积分的说明 9066616
捐赠科研通 2749969
什么是DOI,文献DOI怎么找? 1508808
科研通“疑难数据库(出版商)”最低求助积分说明 697098
邀请新用户注册赠送积分活动 696896