(Invited) Two-Dimensional Neuromorphic Computing Materials and Devices

神经形态工程学 计算机科学 记忆电阻器 冯·诺依曼建筑 逻辑门 控制重构 晶体管 人工神经网络 非常规计算 材料科学 电子工程 人工智能 电气工程 工程类 电压 算法 嵌入式系统 操作系统
作者
Mark C. Hersam
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (13): 1317-1317
标识
DOI:10.1149/ma2023-01131317mtgabs
摘要

The exponentially improving performance of digital computers has recently slowed due to the speed and power consumption issues resulting from the von Neumann bottleneck. In contrast, neuromorphic computing aims to circumvent these limitations by spatially co-locating logic and memory. Beyond reducing power consumption, neuromorphic devices provide efficient architectures for image recognition, machine learning, and artificial intelligence [1]. This talk will explore how two-dimensional (2D) nanoelectronic materials enable gate-tunable neuromorphic devices [2]. For example, by utilizing self-aligned, atomically thin heterojunctions, dual-gated Gaussian transistors have been realized, which show tunable anti-ambipolarity for artificial neurons, competitive learning, spiking circuits, and mixed-kernel support vector machines [3]. In addition, field-driven defect motion in polycrystalline monolayer MoS 2 enables gate-tunable memristive phenomena that serve as the basis of hybrid memristor/transistor devices (i.e., 'memtransistors' [4]) that concurrently provide logic and data storage functions [5]. The planar geometry of memtransistors further allows multiple contacts and dual gating that mimic the behavior of biological systems such as heterosynaptic responses [6]. Moreover, control over polycrystalline grain structure enhances the tunability of potentiation and depression, which enables unsupervised continuous learning in spiking neural networks [7]. Overall, this work introduces foundational circuit elements for neuromorphic computing by utilizing the unique quantum characteristics of 2D nanoelectronic materials [8]. [1] V. K. Sangwan, et al. , Nature Nanotechnology, 15 , 517 (2020). [2] M. E. Beck, et al. , ACS Nano , 14 , 6498 (2020). [3] M. E. Beck, et al. , Nature Communications , 11 , 1565 (2020). [4] V. K. Sangwan, et al. , Nature , 554 , 500 (2018). [5] X. Yan, et al. , Advanced Materials , 34 , 2108025 (2022). [6] H.-S. Lee, et al. , Advanced Functional Materials , 30 , 2003683 (2020). [7] J. Yuan, et al. , Nano Letters , 21 , 6432 (2021). [8] X. Liu, et al. , Nature Reviews Materials , 4 , 669 (2019).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ganjqly应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得50
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
墨痕mohen完成签到,获得积分10
1秒前
1秒前
Peter_Zhu完成签到,获得积分10
3秒前
SharonDu完成签到 ,获得积分10
4秒前
Minigun完成签到,获得积分10
4秒前
沈海完成签到,获得积分10
6秒前
Rong完成签到,获得积分10
6秒前
楚舜华完成签到,获得积分10
8秒前
11秒前
somous完成签到,获得积分10
13秒前
kkkkk完成签到,获得积分10
15秒前
luoluo完成签到,获得积分10
15秒前
jj完成签到,获得积分10
15秒前
18秒前
jagger完成签到,获得积分10
19秒前
zsj完成签到,获得积分10
21秒前
ying完成签到,获得积分10
21秒前
彭于晏应助大方荟采纳,获得10
22秒前
rh完成签到,获得积分10
25秒前
to高坚果发布了新的文献求助30
25秒前
Tim完成签到,获得积分10
30秒前
34秒前
程程完成签到,获得积分10
36秒前
大方荟发布了新的文献求助10
37秒前
大气的尔蓝完成签到,获得积分10
39秒前
40秒前
阿姊完成签到 ,获得积分10
43秒前
完美麦片完成签到,获得积分10
43秒前
哈哈哈完成签到 ,获得积分10
44秒前
包飞雪发布了新的文献求助30
45秒前
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511036
关于积分的说明 11156066
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255