TSPLASSO: A Two-Stage Prior LASSO Algorithm for Gene Selection Using Omics Data

Lasso(编程语言) 特征选择 选择(遗传算法) 计算机科学 基因选择 逻辑回归 弹性网正则化 信息学 数据挖掘 特征(语言学) 人工智能 机器学习 基因 生物 工程类 遗传学 微阵列分析技术 万维网 基因表达 语言学 哲学 电气工程
作者
Sijia Yang,Shunjie Chen,Pei Wang,Aimin Chen,Tianhai Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 526-537 被引量:8
标识
DOI:10.1109/jbhi.2023.3326485
摘要

Feature selection has been extensively applied to identify cancer genes using omics data. Although substantial studies have been conducted to search for cancer genes, the available rich knowledge on various cancers is seldom used as prior information in feature selection. This paper proposes a two-stage prior LASSO (TSPLASSO) method, which represents an early attempt in designing feature selection algorithms using prior information. The first stage performs gene selection via linear regression with LASSO. Candidate genes that are correlated with known cancer genes are retained for subsequent analysis. The second stage establishes a logistic regression model with LASSO to realize final cancer gene selection and sample classification. The key advantages of TSPLASSO include the successive consideration of prior cancer genes and binary sample types as response variables in stages one and two, respectively. In addition, the TSPLASSO performs sample classification and variable selection simultaneously. Compared with six state-of-the-art algorithms, numerical simulations in six real-world datasets show that TSPLASSO can improve the accuracy of variable selection by 5%-400% in the three bulk sequencing datasets and the scRNA-seq dataset; and the performance is robust against data noise and variations of prior cancer genes. The TSPLASSO provides an efficient, stable and practical algorithm for exploring biomedcial and health informatics from omics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周子期完成签到,获得积分10
1秒前
自由凝云完成签到,获得积分20
1秒前
安仕达发布了新的文献求助10
2秒前
赘婿应助枳甜采纳,获得10
3秒前
5秒前
兴奋的小笼包完成签到,获得积分10
6秒前
爆米花应助枫叶采纳,获得10
6秒前
6秒前
婷123完成签到 ,获得积分10
9秒前
搜集达人应助吴路采纳,获得10
10秒前
玥越发布了新的文献求助10
10秒前
April完成签到,获得积分10
12秒前
12秒前
平淡雪枫完成签到 ,获得积分10
13秒前
段段砖应助非而者厚采纳,获得10
13秒前
酷酷发布了新的文献求助10
13秒前
13秒前
爱学习的Audrey完成签到,获得积分10
14秒前
14秒前
黄bb应助GG采纳,获得10
14秒前
小黎发布了新的文献求助10
15秒前
研友_ZGDEG8完成签到,获得积分10
16秒前
上官若男应助小宝妈采纳,获得30
16秒前
17秒前
xls发布了新的文献求助10
18秒前
18秒前
轻松初阳完成签到 ,获得积分10
18秒前
烟花应助ww采纳,获得10
18秒前
hmf1995完成签到 ,获得积分10
18秒前
翠花发布了新的文献求助10
18秒前
19秒前
昏睡的蟠桃应助阿布采纳,获得30
19秒前
20秒前
phil发布了新的文献求助10
22秒前
Clara凤完成签到,获得积分10
23秒前
吴路发布了新的文献求助10
23秒前
25秒前
25秒前
领导范儿应助xr采纳,获得10
26秒前
111发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753107
求助须知:如何正确求助?哪些是违规求助? 3296635
关于积分的说明 10094955
捐赠科研通 3011433
什么是DOI,文献DOI怎么找? 1653764
邀请新用户注册赠送积分活动 788444
科研通“疑难数据库(出版商)”最低求助积分说明 752832