TSPLASSO: A Two-Stage Prior LASSO Algorithm for Gene Selection Using Omics Data

Lasso(编程语言) 特征选择 选择(遗传算法) 计算机科学 基因选择 逻辑回归 弹性网正则化 信息学 数据挖掘 特征(语言学) 人工智能 机器学习 基因 生物 工程类 遗传学 微阵列分析技术 万维网 基因表达 语言学 哲学 电气工程
作者
Sijia Yang,Shunjie Chen,Pei Wang,Aimin Chen,Tianhai Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 526-537 被引量:8
标识
DOI:10.1109/jbhi.2023.3326485
摘要

Feature selection has been extensively applied to identify cancer genes using omics data. Although substantial studies have been conducted to search for cancer genes, the available rich knowledge on various cancers is seldom used as prior information in feature selection. This paper proposes a two-stage prior LASSO (TSPLASSO) method, which represents an early attempt in designing feature selection algorithms using prior information. The first stage performs gene selection via linear regression with LASSO. Candidate genes that are correlated with known cancer genes are retained for subsequent analysis. The second stage establishes a logistic regression model with LASSO to realize final cancer gene selection and sample classification. The key advantages of TSPLASSO include the successive consideration of prior cancer genes and binary sample types as response variables in stages one and two, respectively. In addition, the TSPLASSO performs sample classification and variable selection simultaneously. Compared with six state-of-the-art algorithms, numerical simulations in six real-world datasets show that TSPLASSO can improve the accuracy of variable selection by 5%-400% in the three bulk sequencing datasets and the scRNA-seq dataset; and the performance is robust against data noise and variations of prior cancer genes. The TSPLASSO provides an efficient, stable and practical algorithm for exploring biomedcial and health informatics from omics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助abcdef采纳,获得30
刚刚
cpccc123发布了新的文献求助10
1秒前
1秒前
华仔应助小马牙牙采纳,获得10
2秒前
2秒前
564654SDA完成签到,获得积分10
2秒前
赘婿应助彩色的续采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
3秒前
qi0625完成签到,获得积分10
5秒前
任性馒头完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
科研通AI2S应助化学采纳,获得10
7秒前
9秒前
10秒前
ooo完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
郝宝真发布了新的文献求助10
11秒前
an602完成签到,获得积分10
11秒前
努力发布了新的文献求助10
12秒前
yicheng完成签到,获得积分10
12秒前
cpccc123完成签到,获得积分10
12秒前
斯文败类应助孟祥勤采纳,获得10
13秒前
摩天轮完成签到 ,获得积分10
13秒前
LFFF999发布了新的文献求助10
14秒前
chimchim发布了新的文献求助10
14秒前
小熊5号完成签到,获得积分10
14秒前
左丘芷卉发布了新的文献求助10
15秒前
韩小青发布了新的文献求助10
16秒前
受伤馒头完成签到,获得积分10
16秒前
16秒前
李子园发布了新的文献求助10
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297710
求助须知:如何正确求助?哪些是违规求助? 4446487
关于积分的说明 13839691
捐赠科研通 4331653
什么是DOI,文献DOI怎么找? 2377824
邀请新用户注册赠送积分活动 1373105
关于科研通互助平台的介绍 1338650