TSPLASSO: A Two-Stage Prior LASSO Algorithm for Gene Selection Using Omics Data

Lasso(编程语言) 特征选择 选择(遗传算法) 计算机科学 基因选择 逻辑回归 弹性网正则化 信息学 数据挖掘 特征(语言学) 人工智能 机器学习 基因 生物 工程类 遗传学 微阵列分析技术 基因表达 语言学 哲学 万维网 电气工程
作者
Sijia Yang,Shunjie Chen,Pei Wang,Aimin Chen,Tianhai Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 526-537 被引量:8
标识
DOI:10.1109/jbhi.2023.3326485
摘要

Feature selection has been extensively applied to identify cancer genes using omics data. Although substantial studies have been conducted to search for cancer genes, the available rich knowledge on various cancers is seldom used as prior information in feature selection. This paper proposes a two-stage prior LASSO (TSPLASSO) method, which represents an early attempt in designing feature selection algorithms using prior information. The first stage performs gene selection via linear regression with LASSO. Candidate genes that are correlated with known cancer genes are retained for subsequent analysis. The second stage establishes a logistic regression model with LASSO to realize final cancer gene selection and sample classification. The key advantages of TSPLASSO include the successive consideration of prior cancer genes and binary sample types as response variables in stages one and two, respectively. In addition, the TSPLASSO performs sample classification and variable selection simultaneously. Compared with six state-of-the-art algorithms, numerical simulations in six real-world datasets show that TSPLASSO can improve the accuracy of variable selection by 5%-400% in the three bulk sequencing datasets and the scRNA-seq dataset; and the performance is robust against data noise and variations of prior cancer genes. The TSPLASSO provides an efficient, stable and practical algorithm for exploring biomedcial and health informatics from omics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tian发布了新的文献求助10
刚刚
ww发布了新的文献求助10
1秒前
认真觅荷发布了新的文献求助10
1秒前
玛卡巴卡完成签到,获得积分20
1秒前
科研通AI5应助代代代代采纳,获得10
2秒前
MrRen完成签到,获得积分10
2秒前
牛油果果完成签到,获得积分10
2秒前
hoshi1018完成签到,获得积分10
2秒前
斯文败类应助驱蚊器采纳,获得30
2秒前
科研通AI6应助鲸鱼采纳,获得10
3秒前
303完成签到 ,获得积分10
3秒前
4秒前
LI完成签到,获得积分10
4秒前
4秒前
研友_nEoEy8完成签到,获得积分10
5秒前
冰淇淋完成签到,获得积分10
5秒前
CipherSage应助鲜于冰彤采纳,获得10
5秒前
Weiweiweixiao完成签到,获得积分10
6秒前
6秒前
6秒前
Nimnse发布了新的文献求助10
6秒前
99完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
ding应助孙萌萌采纳,获得20
7秒前
heheha完成签到,获得积分10
8秒前
刘太冰完成签到,获得积分10
8秒前
9秒前
思玉发布了新的文献求助10
9秒前
man发布了新的文献求助10
10秒前
小玲玲完成签到,获得积分10
11秒前
wuti完成签到,获得积分10
11秒前
11秒前
斯文败类应助小刘小刘采纳,获得10
11秒前
邵将发布了新的文献求助10
11秒前
aeyang发布了新的文献求助10
11秒前
bkagyin应助WW采纳,获得10
11秒前
12秒前
12秒前
MYSHOW发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403