TSPLASSO: A Two-Stage Prior LASSO Algorithm for Gene Selection Using Omics Data

Lasso(编程语言) 特征选择 选择(遗传算法) 计算机科学 数据挖掘 算法 人工智能 万维网
作者
Sijia Yang,Shunjie Chen,Pei Wang,Aimin Chen,Tianhai Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 526-537 被引量:3
标识
DOI:10.1109/jbhi.2023.3326485
摘要

Feature selection has been extensively applied to identify cancer genes using omics data. Although substantial studies have been conducted to search for cancer genes, the available rich knowledge on various cancers is seldom used as prior information in feature selection. This paper proposes a two-stage prior LASSO (TSPLASSO) method, which represents an early attempt in designing feature selection algorithms using prior information. The first stage performs gene selection via linear regression with LASSO. Candidate genes that are correlated with known cancer genes are retained for subsequent analysis. The second stage establishes a logistic regression model with LASSO to realize final cancer gene selection and sample classification. The key advantages of TSPLASSO include the successive consideration of prior cancer genes and binary sample types as response variables in stages one and two, respectively. In addition, the TSPLASSO performs sample classification and variable selection simultaneously. Compared with six state-of-the-art algorithms, numerical simulations in six real-world datasets show that TSPLASSO can improve the accuracy of variable selection by 5%–400% in the three bulk sequencing datasets and the scRNA-seq dataset; and the performance is robust against data noise and variations of prior cancer genes. The TSPLASSO provides an efficient, stable and practical algorithm for exploring biomedcial and health informatics from omics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sw完成签到,获得积分10
1秒前
没有神的过往完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
芋圆不圆完成签到,获得积分10
5秒前
招财不肥发布了新的文献求助10
6秒前
zxc111发布了新的文献求助10
6秒前
魔幻的从梦完成签到,获得积分10
6秒前
7秒前
Xiaoxiao应助sunyexuan采纳,获得10
8秒前
9秒前
10秒前
淼淼之锋完成签到 ,获得积分10
10秒前
赢赢完成签到 ,获得积分10
10秒前
11秒前
12秒前
科目三应助落落采纳,获得10
14秒前
67发布了新的文献求助10
14秒前
14秒前
溜溜完成签到,获得积分10
14秒前
xixi完成签到 ,获得积分10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
撒上咖啡应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
琪琪扬扬发布了新的文献求助10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
orixero应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
清爽老九应助科研通管家采纳,获得20
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
hui发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808