TSPLASSO: A Two-Stage Prior LASSO Algorithm for Gene Selection Using Omics Data

Lasso(编程语言) 特征选择 选择(遗传算法) 计算机科学 基因选择 逻辑回归 弹性网正则化 信息学 数据挖掘 特征(语言学) 人工智能 机器学习 基因 生物 工程类 遗传学 微阵列分析技术 万维网 基因表达 语言学 哲学 电气工程
作者
Sijia Yang,Shunjie Chen,Pei Wang,Aimin Chen,Tianhai Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 526-537 被引量:8
标识
DOI:10.1109/jbhi.2023.3326485
摘要

Feature selection has been extensively applied to identify cancer genes using omics data. Although substantial studies have been conducted to search for cancer genes, the available rich knowledge on various cancers is seldom used as prior information in feature selection. This paper proposes a two-stage prior LASSO (TSPLASSO) method, which represents an early attempt in designing feature selection algorithms using prior information. The first stage performs gene selection via linear regression with LASSO. Candidate genes that are correlated with known cancer genes are retained for subsequent analysis. The second stage establishes a logistic regression model with LASSO to realize final cancer gene selection and sample classification. The key advantages of TSPLASSO include the successive consideration of prior cancer genes and binary sample types as response variables in stages one and two, respectively. In addition, the TSPLASSO performs sample classification and variable selection simultaneously. Compared with six state-of-the-art algorithms, numerical simulations in six real-world datasets show that TSPLASSO can improve the accuracy of variable selection by 5%-400% in the three bulk sequencing datasets and the scRNA-seq dataset; and the performance is robust against data noise and variations of prior cancer genes. The TSPLASSO provides an efficient, stable and practical algorithm for exploring biomedcial and health informatics from omics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
响铃发布了新的文献求助10
1秒前
guaishou完成签到,获得积分10
1秒前
1秒前
2秒前
赘婿应助福路采纳,获得10
2秒前
HRB完成签到,获得积分10
2秒前
Owen应助龚修洁采纳,获得10
3秒前
月亮发布了新的文献求助10
4秒前
4秒前
席以亦完成签到,获得积分10
4秒前
lumingrui发布了新的文献求助10
5秒前
卢翠发布了新的文献求助10
6秒前
yxf完成签到,获得积分10
6秒前
7秒前
赵西里完成签到,获得积分10
7秒前
深情安青应助芋泥夹心采纳,获得10
8秒前
8秒前
9秒前
浮游应助Kate采纳,获得10
10秒前
11秒前
傻妞发布了新的文献求助10
12秒前
十一关注了科研通微信公众号
12秒前
13秒前
13秒前
kfoeihf发布了新的文献求助30
14秒前
14秒前
Herrr发布了新的文献求助10
15秒前
福路发布了新的文献求助10
15秒前
15秒前
15秒前
嗯嗯发布了新的文献求助10
15秒前
17秒前
西门子云发布了新的文献求助10
18秒前
漫若浮光发布了新的文献求助10
18秒前
魏魏完成签到,获得积分10
19秒前
科研通AI5应助嗯嗯采纳,获得10
21秒前
初一的月亮完成签到,获得积分10
21秒前
完美世界应助jojo采纳,获得10
22秒前
Hashou发布了新的文献求助10
22秒前
自由中心完成签到 ,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783