汉密尔顿-雅各比-贝尔曼方程
动态规划
最优控制
计算机科学
控制理论(社会学)
仿射变换
非线性系统
转化(遗传学)
控制器(灌溉)
人工神经网络
数学优化
状态向量
控制(管理)
数学
算法
人工智能
生物化学
化学
物理
量子力学
生物
纯数学
农学
基因
经典力学
作者
Qinglai Wei,Shanshan Jiao,Fei‐Yue Wang,Qi Dong
标识
DOI:10.1109/tcyb.2023.3312543
摘要
This article focuses on a novel robust optimal parallel tracking control method for continuous-time (CT) nonlinear systems subject to uncertainties. First, the designed virtual controller facilitates the transformation of the original nonlinear system into an affine system with an augmented state vector, which promotes the introduction of the optimal parallel tracking control problem. Then, this article generates fresh insight into counteracting the effects of uncertainty by developing a novel parallel control system that invokes the formulated virtual control law and an auxiliary variable obtained from the relationship between the solutions of the optimal control problems for the uncertain system and the nominal one. Next, critic neural networks (NNs) approximate the Hamilton-Jacobi-Bellman (HJB) equations' solution to implement the proposed robust optimal control method via adaptive dynamic programming (ADP). Finally, simulation experiments demonstrate the proposed method's remarkable effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI