已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Multi-Modal Ensemble Classification Approach for Human Breast Cancer Prognosis

计算机科学 情态动词 集成学习 人工智能 乳腺癌 机器学习 癌症 医学 内科学 化学 高分子化学
作者
Ehtisham Khan Jadoon,Fiaz Gul Khan,Sajid Shah,Ahmad Khan,Muhammed ElAffendi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85760-85769 被引量:11
标识
DOI:10.1109/access.2023.3304242
摘要

Ensemble models based on deep learning have made significant contributions to the medical field, particularly in the area of disease prediction. Breast cancer is a highly aggressive disease with a high mortality rate. Timely and effective prediction of breast cancer can reduce the risk of it progressing to later stages and the need for unnecessary medications. While previous studies have focused on predicting breast cancer using single-modal datasets, multi-modal datasets that include gene expression (gene exp), clinical, and copy number variation (CNV) data have become available in recent years for predictive model development. However, despite multiple studies using multi-modal data for disease prediction, models designed for breast cancer are typically homogeneous neural networks. This article proposes a heterogeneous deep learning-based ensemble model for effective breast cancer prediction using multi-modal data. The model consists of three phases: feature extraction, stacked feature set creation, and using extracted features as input for a stacked-based model using a random forest algorithm for effective prediction. For feature extraction, convolutional neural networks (CNNs) are used for clinical and gene expression data, and deep neural networks (DNNs) are used for CNV data. The extracted features from CNNs and DNNs are stacked to create a comprehensive feature set. The simulation results demonstrate the superiority of the proposed framework in terms of accuracy compared to uni-modal and homogeneous model-multi-modal frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123a应助雨季采纳,获得10
2秒前
2秒前
虚幻寄文完成签到 ,获得积分10
2秒前
蓝白完成签到,获得积分10
5秒前
6秒前
黄飚完成签到,获得积分10
7秒前
yanxuhuan完成签到 ,获得积分10
7秒前
9秒前
12秒前
17秒前
muyang发布了新的文献求助10
17秒前
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
ding应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
张弛完成签到,获得积分10
19秒前
lustr完成签到 ,获得积分10
19秒前
21秒前
张弛发布了新的文献求助20
21秒前
默默善愁发布了新的文献求助10
22秒前
瘦瘦的百褶裙完成签到 ,获得积分10
22秒前
上官若男应助Yyyang采纳,获得10
22秒前
123a应助muyang采纳,获得10
26秒前
故城完成签到 ,获得积分10
27秒前
27秒前
sskaze完成签到 ,获得积分10
27秒前
李爱国应助默默善愁采纳,获得10
28秒前
充电宝应助meeteryu采纳,获得10
29秒前
2223发布了新的文献求助10
31秒前
李义志完成签到 ,获得积分10
33秒前
36秒前
一介尘埃完成签到 ,获得积分10
37秒前
37秒前
郭郭完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418110
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142309
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441088
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410039