Deep Learning-Based Multi-Modal Ensemble Classification Approach for Human Breast Cancer Prognosis

计算机科学 情态动词 集成学习 人工智能 乳腺癌 机器学习 癌症 医学 内科学 化学 高分子化学
作者
Ehtisham Khan Jadoon,Fiaz Gul Khan,Sajid Shah,Ahmad Khan,Muhammed ElAffendi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 85760-85769 被引量:11
标识
DOI:10.1109/access.2023.3304242
摘要

Ensemble models based on deep learning have made significant contributions to the medical field, particularly in the area of disease prediction. Breast cancer is a highly aggressive disease with a high mortality rate. Timely and effective prediction of breast cancer can reduce the risk of it progressing to later stages and the need for unnecessary medications. While previous studies have focused on predicting breast cancer using single-modal datasets, multi-modal datasets that include gene expression (gene exp), clinical, and copy number variation (CNV) data have become available in recent years for predictive model development. However, despite multiple studies using multi-modal data for disease prediction, models designed for breast cancer are typically homogeneous neural networks. This article proposes a heterogeneous deep learning-based ensemble model for effective breast cancer prediction using multi-modal data. The model consists of three phases: feature extraction, stacked feature set creation, and using extracted features as input for a stacked-based model using a random forest algorithm for effective prediction. For feature extraction, convolutional neural networks (CNNs) are used for clinical and gene expression data, and deep neural networks (DNNs) are used for CNV data. The extracted features from CNNs and DNNs are stacked to create a comprehensive feature set. The simulation results demonstrate the superiority of the proposed framework in terms of accuracy compared to uni-modal and homogeneous model-multi-modal frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。。。发布了新的文献求助10
1秒前
1秒前
1秒前
卓一曲完成签到,获得积分10
2秒前
机灵安白完成签到,获得积分10
2秒前
行萱完成签到 ,获得积分10
3秒前
糊糊完成签到 ,获得积分10
4秒前
5秒前
7秒前
冷酷乌龟应助典雅的俊驰采纳,获得10
7秒前
11秒前
。。。完成签到,获得积分20
11秒前
Steven发布了新的文献求助10
12秒前
小刺猬完成签到,获得积分10
15秒前
SCI的芷蝶完成签到 ,获得积分10
16秒前
17秒前
19秒前
19秒前
xzy998应助初学者采纳,获得10
20秒前
陈军应助myy采纳,获得10
21秒前
一番星完成签到,获得积分10
22秒前
xiaoming发布了新的文献求助10
22秒前
22秒前
休眠火山完成签到,获得积分10
22秒前
23秒前
落红禹03发布了新的文献求助10
23秒前
老王爱学习完成签到,获得积分10
25秒前
Gaahung完成签到,获得积分10
26秒前
26秒前
hg08发布了新的文献求助10
27秒前
27秒前
xzf1996完成签到,获得积分10
28秒前
xzy998应助tanglu采纳,获得10
28秒前
茹茹完成签到 ,获得积分10
30秒前
32秒前
ED应助科研通管家采纳,获得10
32秒前
SHAO应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
pcr163应助科研通管家采纳,获得30
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425