清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Balanced multi-scale target score network for ceramic tile surface defect detection

瓦片 特征(语言学) 比例(比率) 计算机科学 人工智能 过程(计算) 模式识别(心理学) 构造(python库) 数据挖掘 机器学习 材料科学 复合材料 哲学 语言学 物理 量子力学 程序设计语言 操作系统
作者
Tonglei Cao,Kechen Song,Likun Xu,Hu Feng,Yunhui Yan,Jingbo Guo
出处
期刊:Measurement [Elsevier BV]
卷期号:224: 113914-113914 被引量:4
标识
DOI:10.1016/j.measurement.2023.113914
摘要

Ceramic tiles, as a prevalent building material, exhibit a wide variety of types and high demand. Traditional manual inspection methods relying on human visual observation suffer from low efficiency and unreliable accuracy. Current automated detection methods mostly rely on traditional image processing techniques for feature extraction, followed by machine learning-based classification. However, faced with the diversity of tile types and defect categories, fine-tuning and deployment processes require significant human and material resources, while detection efficiency remains limited. In this study, we first construct a high-resolution dataset for studying surface defects in ceramic tiles (CT surface defects dataset), encompassing multiple batches and various patterns of tiles. Subsequently, data analysis is conducted to address the scale and quantity differences in defect distribution. We propose an improved approach by introducing a content-aware feature recombination method and a dynamic attention mechanism to enhance the classical single-stage object detection algorithm YOLOv5. These enhancements aim to reduce information loss in features and enhance the expression of multi-scale features. Furthermore, we design a loss function that mitigates score differences for multi-scale defects. The proposed approach mitigates the discrepancy in contribution among different scale targets caused by imbalanced quantities. It effectively prevents the model from excessively favoring a specific scale target during the learning process. Experimental results demonstrate the superior accuracy and efficiency of our detection method. Compared to the baseline network YOLOv5, our approach achieved improvements of 4.9% in AP (Average Precision), 6% in APs (small-scale objects), and 8% in APl (large-scale objects). Furthermore, we achieved a 3.9% improvement in detecting white point defects, which are most affected by small-scale objects, and a 4.1% improvement in detecting discolored spot defect, which are most affected by class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rayoo发布了新的文献求助10
1秒前
Benhnhk21发布了新的文献求助10
7秒前
Rayoo完成签到,获得积分10
13秒前
13秒前
小新小新完成签到 ,获得积分10
16秒前
18秒前
徐进完成签到,获得积分10
20秒前
30秒前
平常的三问完成签到 ,获得积分10
31秒前
hyl-tcm完成签到 ,获得积分10
37秒前
诺贝尔候选人完成签到 ,获得积分10
37秒前
41秒前
Skywalk满天星完成签到,获得积分10
41秒前
桥西小河完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
整齐的雪旋应助Benhnhk21采纳,获得10
2分钟前
Yolenders完成签到 ,获得积分10
2分钟前
kkk完成签到 ,获得积分10
2分钟前
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
ding应助real采纳,获得10
2分钟前
隐形松完成签到 ,获得积分10
3分钟前
感性的神级完成签到,获得积分10
3分钟前
明天完成签到,获得积分10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
庄海棠完成签到 ,获得积分10
3分钟前
xue112完成签到 ,获得积分10
4分钟前
江三村完成签到 ,获得积分10
4分钟前
001完成签到 ,获得积分10
4分钟前
4分钟前
jlwang完成签到,获得积分10
4分钟前
Shun完成签到 ,获得积分10
4分钟前
zlx完成签到 ,获得积分10
4分钟前
ww完成签到,获得积分10
4分钟前
猪猪完成签到 ,获得积分10
5分钟前
牧沛凝完成签到 ,获得积分10
5分钟前
火之高兴完成签到 ,获得积分10
5分钟前
zjq完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839