Balanced multi-scale target score network for ceramic tile surface defect detection

瓦片 特征(语言学) 比例(比率) 计算机科学 人工智能 过程(计算) 模式识别(心理学) 构造(python库) 数据挖掘 机器学习 材料科学 哲学 物理 复合材料 程序设计语言 操作系统 量子力学 语言学
作者
Tonglei Cao,Kechen Song,Likun Xu,Hu Feng,Yunhui Yan,Jingbo Guo
出处
期刊:Measurement [Elsevier BV]
卷期号:224: 113914-113914 被引量:4
标识
DOI:10.1016/j.measurement.2023.113914
摘要

Ceramic tiles, as a prevalent building material, exhibit a wide variety of types and high demand. Traditional manual inspection methods relying on human visual observation suffer from low efficiency and unreliable accuracy. Current automated detection methods mostly rely on traditional image processing techniques for feature extraction, followed by machine learning-based classification. However, faced with the diversity of tile types and defect categories, fine-tuning and deployment processes require significant human and material resources, while detection efficiency remains limited. In this study, we first construct a high-resolution dataset for studying surface defects in ceramic tiles (CT surface defects dataset), encompassing multiple batches and various patterns of tiles. Subsequently, data analysis is conducted to address the scale and quantity differences in defect distribution. We propose an improved approach by introducing a content-aware feature recombination method and a dynamic attention mechanism to enhance the classical single-stage object detection algorithm YOLOv5. These enhancements aim to reduce information loss in features and enhance the expression of multi-scale features. Furthermore, we design a loss function that mitigates score differences for multi-scale defects. The proposed approach mitigates the discrepancy in contribution among different scale targets caused by imbalanced quantities. It effectively prevents the model from excessively favoring a specific scale target during the learning process. Experimental results demonstrate the superior accuracy and efficiency of our detection method. Compared to the baseline network YOLOv5, our approach achieved improvements of 4.9% in AP (Average Precision), 6% in APs (small-scale objects), and 8% in APl (large-scale objects). Furthermore, we achieved a 3.9% improvement in detecting white point defects, which are most affected by small-scale objects, and a 4.1% improvement in detecting discolored spot defect, which are most affected by class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助jwjzsznb采纳,获得10
刚刚
五月天完成签到,获得积分10
1秒前
klyang应助liyi采纳,获得30
1秒前
张发财应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
某亮发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
老阎应助科研通管家采纳,获得30
2秒前
英姑应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大模型应助柏达采纳,获得30
2秒前
所所应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
加菲丰丰应助科研通管家采纳,获得30
3秒前
大模型应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
ding应助老王采纳,获得10
4秒前
5秒前
隐形曼青应助BGWZSG采纳,获得10
5秒前
成就灭龙发布了新的文献求助10
5秒前
cai完成签到,获得积分10
6秒前
科研通AI5应助尔尔采纳,获得10
7秒前
7秒前
8秒前
ANXU发布了新的文献求助10
8秒前
junlin完成签到,获得积分10
9秒前
刘十三完成签到 ,获得积分10
10秒前
在我梦里绕完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195591
求助须知:如何正确求助?哪些是违规求助? 4377513
关于积分的说明 13632857
捐赠科研通 4232862
什么是DOI,文献DOI怎么找? 2321855
邀请新用户注册赠送积分活动 1320039
关于科研通互助平台的介绍 1270480