Balanced multi-scale target score network for ceramic tile surface defect detection

瓦片 特征(语言学) 比例(比率) 计算机科学 人工智能 过程(计算) 模式识别(心理学) 构造(python库) 数据挖掘 机器学习 材料科学 哲学 物理 复合材料 程序设计语言 操作系统 量子力学 语言学
作者
Tonglei Cao,Kechen Song,Likun Xu,Hu Feng,Yunhui Yan,Jingbo Guo
出处
期刊:Measurement [Elsevier]
卷期号:224: 113914-113914 被引量:4
标识
DOI:10.1016/j.measurement.2023.113914
摘要

Ceramic tiles, as a prevalent building material, exhibit a wide variety of types and high demand. Traditional manual inspection methods relying on human visual observation suffer from low efficiency and unreliable accuracy. Current automated detection methods mostly rely on traditional image processing techniques for feature extraction, followed by machine learning-based classification. However, faced with the diversity of tile types and defect categories, fine-tuning and deployment processes require significant human and material resources, while detection efficiency remains limited. In this study, we first construct a high-resolution dataset for studying surface defects in ceramic tiles (CT surface defects dataset), encompassing multiple batches and various patterns of tiles. Subsequently, data analysis is conducted to address the scale and quantity differences in defect distribution. We propose an improved approach by introducing a content-aware feature recombination method and a dynamic attention mechanism to enhance the classical single-stage object detection algorithm YOLOv5. These enhancements aim to reduce information loss in features and enhance the expression of multi-scale features. Furthermore, we design a loss function that mitigates score differences for multi-scale defects. The proposed approach mitigates the discrepancy in contribution among different scale targets caused by imbalanced quantities. It effectively prevents the model from excessively favoring a specific scale target during the learning process. Experimental results demonstrate the superior accuracy and efficiency of our detection method. Compared to the baseline network YOLOv5, our approach achieved improvements of 4.9% in AP (Average Precision), 6% in APs (small-scale objects), and 8% in APl (large-scale objects). Furthermore, we achieved a 3.9% improvement in detecting white point defects, which are most affected by small-scale objects, and a 4.1% improvement in detecting discolored spot defect, which are most affected by class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王炎欣发布了新的文献求助10
1秒前
丿淘丶Tao丨完成签到,获得积分10
2秒前
Loik完成签到,获得积分20
2秒前
RuiminXie发布了新的文献求助10
5秒前
6秒前
明理的喵完成签到,获得积分10
8秒前
9秒前
10秒前
ponytail发布了新的文献求助10
10秒前
kudoukoumei完成签到,获得积分10
11秒前
keyanwang完成签到 ,获得积分10
14秒前
15秒前
kudoukoumei发布了新的文献求助10
15秒前
悦耳白山发布了新的文献求助10
17秒前
suan发布了新的文献求助10
19秒前
辛夷坞发布了新的文献求助10
20秒前
小马甲应助Muttu采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
Henry应助文龙采纳,获得200
22秒前
敏敏敏呐发布了新的文献求助10
23秒前
23秒前
冷傲的无剑完成签到,获得积分10
26秒前
阳光向秋发布了新的文献求助10
27秒前
gfg达达发布了新的文献求助10
29秒前
我是老大应助微不足道采纳,获得10
29秒前
Jasper应助满意白卉采纳,获得10
30秒前
in完成签到,获得积分0
31秒前
JJ完成签到,获得积分10
31秒前
zxz完成签到,获得积分10
31秒前
zhang完成签到,获得积分10
33秒前
深情安青应助云上人采纳,获得10
35秒前
36秒前
互助遵法尚德应助deeferf采纳,获得10
37秒前
37秒前
40秒前
Niuma发布了新的文献求助10
40秒前
小东子发布了新的文献求助30
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079