Balanced multi-scale target score network for ceramic tile surface defect detection

瓦片 特征(语言学) 比例(比率) 计算机科学 人工智能 过程(计算) 模式识别(心理学) 构造(python库) 数据挖掘 机器学习 材料科学 复合材料 哲学 语言学 物理 量子力学 程序设计语言 操作系统
作者
Tonglei Cao,Kechen Song,Likun Xu,Hu Feng,Yunhui Yan,Jingbo Guo
出处
期刊:Measurement [Elsevier]
卷期号:224: 113914-113914 被引量:4
标识
DOI:10.1016/j.measurement.2023.113914
摘要

Ceramic tiles, as a prevalent building material, exhibit a wide variety of types and high demand. Traditional manual inspection methods relying on human visual observation suffer from low efficiency and unreliable accuracy. Current automated detection methods mostly rely on traditional image processing techniques for feature extraction, followed by machine learning-based classification. However, faced with the diversity of tile types and defect categories, fine-tuning and deployment processes require significant human and material resources, while detection efficiency remains limited. In this study, we first construct a high-resolution dataset for studying surface defects in ceramic tiles (CT surface defects dataset), encompassing multiple batches and various patterns of tiles. Subsequently, data analysis is conducted to address the scale and quantity differences in defect distribution. We propose an improved approach by introducing a content-aware feature recombination method and a dynamic attention mechanism to enhance the classical single-stage object detection algorithm YOLOv5. These enhancements aim to reduce information loss in features and enhance the expression of multi-scale features. Furthermore, we design a loss function that mitigates score differences for multi-scale defects. The proposed approach mitigates the discrepancy in contribution among different scale targets caused by imbalanced quantities. It effectively prevents the model from excessively favoring a specific scale target during the learning process. Experimental results demonstrate the superior accuracy and efficiency of our detection method. Compared to the baseline network YOLOv5, our approach achieved improvements of 4.9% in AP (Average Precision), 6% in APs (small-scale objects), and 8% in APl (large-scale objects). Furthermore, we achieved a 3.9% improvement in detecting white point defects, which are most affected by small-scale objects, and a 4.1% improvement in detecting discolored spot defect, which are most affected by class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
刚刚
刚刚
jasmine970000发布了新的文献求助100
刚刚
酷波er应助camellia采纳,获得10
1秒前
Zoe发布了新的文献求助10
1秒前
1秒前
1秒前
啊实打实完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
参上完成签到,获得积分10
4秒前
mingjie完成签到,获得积分10
4秒前
yam001完成签到,获得积分10
4秒前
aaaaa发布了新的文献求助10
4秒前
5秒前
牧紫菱完成签到,获得积分10
5秒前
6秒前
研友_RLN0vZ发布了新的文献求助10
6秒前
6秒前
6秒前
神勇的雅香应助001采纳,获得10
7秒前
研友_V8RDYn完成签到,获得积分10
7秒前
zzznznnn发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
FFFFFFF应助晓军采纳,获得10
10秒前
wanci应助艺玲采纳,获得10
10秒前
jfc完成签到 ,获得积分10
10秒前
香蕉觅云应助月白采纳,获得10
10秒前
思源应助mmx采纳,获得10
10秒前
Diaory2023完成签到 ,获得积分0
10秒前
雪小岳完成签到,获得积分10
11秒前
李小明完成签到,获得积分10
11秒前
11秒前
白小白发布了新的文献求助10
12秒前
thchiang发布了新的文献求助30
12秒前
Crsip关注了科研通微信公众号
12秒前
乐乐应助camellia采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762