Deep learning for the early identification of periodontitis: a retrospective, multicentre study

医学 牙周炎 接收机工作特性 卷积神经网络 射线照相术 深度学习 人工智能 牙科 放射科 内科学 计算机科学
作者
Qing Liu,Deng-Ping Fan,Haihua Zhu,Yang Hu,Y. Huang,Li Jiang,Xuan Tang,Libin Deng,Song Li
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (12): e985-e992 被引量:1
标识
DOI:10.1016/j.crad.2023.08.017
摘要

•Developing convolutional neural network model for periodontitis using radiographs. •Regions of interest predicted by the model are periodontitis bone lesions. •Ability of the model for periodontitis reaches the level of periodontal experts. •The time required to read each radiograph by the model was shorter than clinicians. Aim To develop a deep-learning model to help general dental practitioners diagnose periodontitis accurately and at an early stage. Materials and methods First, the panoramic radiographs (PARs) from the Second Affiliated Hospital of Nanchang University were input into the convolutional neural network (CNN) architecture to establish the PAR-CNN model for healthy controls and periodontitis patients. Then, the PARs from the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were included in the second testing set to validate the effectiveness of the model with data from two centres. Heat maps were produced using a gradient-weighted class activation mapping method to visualise the regions of interest of the model. The accuracy and time required to read the PARs were compared between the model, periodontal experts, and general dental practitioners. Areas under the receiver operating characteristic curve (AUCs) were used to evaluate the performance of the model. Results The AUC of the PAR-CNN model was 0.843, and the AUC of the second test set was 0.793. The heat map showed that the regions of interest predicted by the model were periodontitis bone lesions. The accuracy of the model, periodontal experts, and general dental practitioners was 0.800, 0.813, and 0.693, respectively. The time required to read each PAR by periodontal experts (6.042 ± 1.148 seconds) and general dental practitioners (13.105 ± 3.153 seconds), which was significantly longer than the time required by the model (0.027 ± 0.002 seconds). Conclusion The ability of the CNN model to diagnose periodontitis approached the level of periodontal experts. Deep-learning methods can assist general dental practitioners to diagnose periodontitis quickly and accurately. To develop a deep-learning model to help general dental practitioners diagnose periodontitis accurately and at an early stage. First, the panoramic radiographs (PARs) from the Second Affiliated Hospital of Nanchang University were input into the convolutional neural network (CNN) architecture to establish the PAR-CNN model for healthy controls and periodontitis patients. Then, the PARs from the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were included in the second testing set to validate the effectiveness of the model with data from two centres. Heat maps were produced using a gradient-weighted class activation mapping method to visualise the regions of interest of the model. The accuracy and time required to read the PARs were compared between the model, periodontal experts, and general dental practitioners. Areas under the receiver operating characteristic curve (AUCs) were used to evaluate the performance of the model. The AUC of the PAR-CNN model was 0.843, and the AUC of the second test set was 0.793. The heat map showed that the regions of interest predicted by the model were periodontitis bone lesions. The accuracy of the model, periodontal experts, and general dental practitioners was 0.800, 0.813, and 0.693, respectively. The time required to read each PAR by periodontal experts (6.042 ± 1.148 seconds) and general dental practitioners (13.105 ± 3.153 seconds), which was significantly longer than the time required by the model (0.027 ± 0.002 seconds). The ability of the CNN model to diagnose periodontitis approached the level of periodontal experts. Deep-learning methods can assist general dental practitioners to diagnose periodontitis quickly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mona完成签到,获得积分10
刚刚
科研通AI2S应助魔幻山芙采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
鹿飞松应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
鹿飞松应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得20
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
窝窝头应助科研通管家采纳,获得20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
呵浅陌完成签到,获得积分10
4秒前
4秒前
丰富紫寒发布了新的文献求助10
5秒前
5秒前
元谷雪发布了新的文献求助10
6秒前
wschenau完成签到,获得积分10
7秒前
Matrix发布了新的文献求助10
8秒前
cm发布了新的文献求助30
9秒前
小蘑菇应助和谐的阁采纳,获得30
13秒前
13秒前
993完成签到,获得积分20
13秒前
15秒前
15秒前
cm发布了新的文献求助30
17秒前
17秒前
深情安青应助忧虑的访梦采纳,获得10
17秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870