Composite propeller design optimization for cavitation minimization using deep learning-based objective parameter prediction model

螺旋桨 空化 复合数 缩小 工程类 计算机科学 结构工程 海洋工程 算法 声学 物理 程序设计语言
作者
Yo-Seb Choi,Suk-Yoon Hong,Jee-Hun Song
出处
期刊:Ocean Engineering [Elsevier]
卷期号:287: 115760-115760 被引量:8
标识
DOI:10.1016/j.oceaneng.2023.115760
摘要

Recently, composite propellers have attracted attention as a means of reducing cavitation. To maximize cavitation reduction when using a composite propeller, the design of a composite propeller must be optimized. In this study, deep learning-based prediction models for composite propeller design optimization and design optimization procedures based on these models are proposed. The prediction models are trained using a training dataset consisting of the training input data obtained from a data scan grid, and the training output data include cavitation volume, adaptive deformation, and failure index. To minimize cavitation on a composite propeller, a composite propeller design optimization procedure for propeller geometry and composite lay-up sequence based on the developed prediction models is established. By following the proposed procedure, an optimized composite propeller design that minimizes cavitation volume and adaptive deformation is obtained. The cavitation of the optimized composite propeller is approximately half that of the original propeller. This result verifies the effectiveness of the proposed design optimization procedure based on the developed prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李本来完成签到,获得积分20
1秒前
看看发布了新的文献求助10
1秒前
ZZY完成签到,获得积分10
1秒前
DQY完成签到,获得积分10
2秒前
BONBON完成签到,获得积分20
2秒前
动听导师发布了新的文献求助10
3秒前
3秒前
季忆完成签到,获得积分10
3秒前
小周发布了新的文献求助10
4秒前
smile发布了新的文献求助10
4秒前
5秒前
Lore完成签到 ,获得积分10
5秒前
5秒前
jiang完成签到,获得积分10
6秒前
6秒前
无奈的酒窝关注了科研通微信公众号
7秒前
毛毛完成签到,获得积分10
7秒前
正在完成签到,获得积分10
8秒前
8秒前
充电宝应助JR采纳,获得10
9秒前
9秒前
cc完成签到,获得积分20
9秒前
李爱国应助111采纳,获得10
9秒前
jy发布了新的文献求助10
9秒前
好好完成签到 ,获得积分10
10秒前
阿希塔完成签到,获得积分10
10秒前
JamesPei应助看看采纳,获得10
10秒前
12秒前
12秒前
卢健辉发布了新的文献求助10
12秒前
13秒前
cookie完成签到,获得积分10
13秒前
JMZ完成签到 ,获得积分10
15秒前
英姑应助星星采纳,获得10
15秒前
spurs17发布了新的文献求助30
16秒前
LH完成签到,获得积分10
16秒前
CodeCraft应助Island采纳,获得10
17秒前
annis完成签到,获得积分10
17秒前
小黄应助asir_xw采纳,获得10
18秒前
认真的rain完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808