PMJAF-Net: Pyramidal multi-scale joint attention and adaptive fusion network for explainable skin lesion segmentation

计算机科学 人工智能 分割 可解释性 特征(语言学) 模式识别(心理学) 卷积神经网络 联营 增采样 频道(广播) 像素 计算机视觉 图像(数学) 计算机网络 语言学 哲学
作者
Haiyan Li,Peng Zeng,Chongbin Bai,Wei Wang,Ying Yu,Pengfei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107454-107454 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107454
摘要

Traditional convolutional neural networks have achieved remarkable success in skin lesion segmentation. However, the successive pooling operations and convolutional spans reduce the feature resolution and hinder the dense prediction for spatial information, resulting in blurred boundaries, low accuracy and poor interpretability for irregular lesion segmentation under low contrast. To solve the above issues, a pyramidal multi-scale joint attention and adaptive fusion network for explainable (PMJAF-Net) skin lesion segmentation is proposed. Firstly, an adaptive spatial attention module is designed to establish the long-term correlation between pixels, enrich the global and local contextual information, and refine the detailed features. Subsequently, an efficient pyramidal multi-scale channel attention module is proposed to capture the multi-scale information and edge features by using the pyramidal module. Meanwhile, a channel attention module is devised to establish the long-term correlation between channels and highlight the most related feature channels to capture the multi-scale key information on each channel. Thereafter, a multi-scale adaptive fusion attention module is put forward to efficiently fuse the scale features at different decoding stages. Finally, a novel hybrid loss function based on region salient features and boundary quality is presented to guide the network to learn from map-level, patch-level and pixel-level and to accurately predict the lesion regions with clear boundaries. In addition, visualizing attention weight maps are utilized to visually enhance the interpretability of our proposed model. Comprehensive experiments are conducted on four public skin lesion datasets, and the results demonstrate that the proposed network outperforms the state-of-the-art methods, with the segmentation assessment evaluation metrics Dice, JI, and ACC improved to 92.65%, 87.86% and 96.26%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mariawang采纳,获得10
1秒前
1秒前
清秀灵薇完成签到,获得积分10
1秒前
满天星完成签到 ,获得积分20
1秒前
Gdhdjxbbx发布了新的文献求助10
2秒前
黄新绒完成签到 ,获得积分10
2秒前
3秒前
完美世界应助31313采纳,获得10
3秒前
共享精神应助weilu采纳,获得10
5秒前
6秒前
7秒前
卡皮巴拉下班完成签到,获得积分10
7秒前
8秒前
8秒前
大模型应助盛弟采纳,获得10
9秒前
9秒前
10秒前
现代代双发布了新的文献求助10
10秒前
10秒前
传奇3应助叮咚采纳,获得10
11秒前
桐桐应助Deadman采纳,获得10
11秒前
谢俏艳发布了新的文献求助10
12秒前
一只鱼发布了新的文献求助10
12秒前
XoXo完成签到,获得积分10
12秒前
dff发布了新的文献求助10
13秒前
刹那的颜色完成签到,获得积分10
15秒前
GEeZiii发布了新的文献求助10
16秒前
16秒前
31313发布了新的文献求助10
16秒前
科研助手6应助培爷采纳,获得10
17秒前
丽莉完成签到,获得积分10
18秒前
田様应助刘猛闯采纳,获得10
18秒前
18秒前
南星完成签到 ,获得积分10
19秒前
dff完成签到,获得积分10
19秒前
19秒前
zeng完成签到,获得积分10
20秒前
盛弟发布了新的文献求助10
21秒前
22秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021