Global urban high-resolution land-use mapping: From benchmarks to multi-megacity applications

特大城市 计算机科学 土地利用 遥感 城市规划 比例(比率) 地理信息系统 土地利用规划 土地信息系统 地图学 地理 土地管理 土木工程 工程类 经济 经济
作者
Yanfei Zhong,Bowen Yan,Jingjun Yi,Ruiyi Yang,Mengzi Xu,Yu Su,Zhendong Zheng,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:298: 113758-113758 被引量:13
标识
DOI:10.1016/j.rse.2023.113758
摘要

Timely and reliable land-use maps are of great importance in urban planning and environmental monitoring. With the rich spatial structure information, very high resolution (VHR) imagery is an important data source for identifying complex urban land use. However, the existing scene datasets and land-use mapping products based on VHR images have the following three problems: 1) accurate geographic boundaries of urban land parcels are lacking; 2) the category systems are inconsistent with the definitions in urban land use; and 3) it is difficult to achieve efficient and fully automated mapping in multiple cities. To tackle these problems, the GlobalUrbanNet-based automatic multi-city mapping and analysis (GAMMA) framework is proposed in this article. The GAMMA framework is made up of the GlobalUrbanNet (GUN) dataset, the multi-city fully automatic urban land-use mapping (AutoULUM) method, and the analysis of urban development patterns. Specifically, the large-scale 42-category fine-grained VHR urban land-use dataset—the GUN dataset—was constructed to deal with the above global urban land-use mapping problems, which contains 1,846,151 samples and 42 land-use categories covering six continents. The GUN dataset samples with land-use semantics and parcel boundaries were generated automatically based on the open-source area of interest (AOI) data from OpenStreetMap (OSM). In addition, the AutoULUM method is proposed to automate the process of OSM road network rectification and land parcel generation. On this basis, efficient and complete multi-city land-use maps can be produced using the GUN-pretrained scene classification models. To establish a benchmark for urban land-use classification, the representative urban land-use classification methods were evaluated on the GUN dataset. For further application, eight megacities from six continents were selected for automatic land-use mapping and analysis, i.e., Shanghai, Wuhan, and Chengdu in Asia, Helsinki in Europe, Nairobi in Africa, New York in North America, Rio de Janeiro in South America, and Sydney in Oceania. The results show that the models trained on the proposed GUN dataset have good generalizability in global urban areas, the AutoULUM method achieves efficient and fully automatic land-use mapping, and the GAMMA framework will help boost the coordinated development of multiple cities around the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Renee发布了新的文献求助20
刚刚
撖堡包完成签到 ,获得积分20
1秒前
11发布了新的文献求助10
1秒前
范海辛完成签到,获得积分10
1秒前
长隆发布了新的文献求助10
2秒前
CipherSage应助Flllllll采纳,获得10
2秒前
junxi完成签到 ,获得积分10
4秒前
5秒前
wzy完成签到,获得积分10
6秒前
呵呵完成签到,获得积分10
6秒前
飞兰发布了新的文献求助10
7秒前
韩大王完成签到,获得积分10
7秒前
趣味发布了新的文献求助10
7秒前
11完成签到,获得积分10
8秒前
ZG完成签到,获得积分10
10秒前
柳豁发布了新的文献求助10
10秒前
CodeCraft应助咪呼采纳,获得10
10秒前
撖堡包关注了科研通微信公众号
11秒前
12秒前
谦让大娘完成签到,获得积分20
13秒前
陆仔完成签到,获得积分10
13秒前
朴实丸子完成签到,获得积分10
14秒前
桐桐应助卡塔赫纳采纳,获得10
15秒前
完美世界应助於伟祺采纳,获得10
15秒前
16秒前
CipherSage应助雨雨采纳,获得10
16秒前
李爱国应助葭月十七采纳,获得10
18秒前
8R60d8应助ppppp采纳,获得10
20秒前
20秒前
Flllllll发布了新的文献求助10
21秒前
leslie应助陈翔采纳,获得10
21秒前
2028847955发布了新的文献求助10
21秒前
22秒前
22秒前
杭啊完成签到 ,获得积分10
23秒前
23秒前
Reftro发布了新的文献求助10
23秒前
思源应助OuO采纳,获得10
23秒前
coasting发布了新的文献求助10
23秒前
wertyt完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247880
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266211
捐赠科研通 2559325
什么是DOI,文献DOI怎么找? 1388116
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627581