亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coarse-to-Fine Nutrition Prediction

计算机科学 箱子 人工智能 模棱两可 回归 范围(计算机科学) 基本事实 过程(计算) 机器学习 数据挖掘 算法 统计 数学 程序设计语言 操作系统
作者
Binglu Wang,Tianci Bu,Zaiyi Hu,Le Yang,Yongqiang Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3651-3662
标识
DOI:10.1109/tmm.2023.3313638
摘要

Healthy dietary intake has a broad influence on the quality of life, and nutrition prediction plays a great role in the auxiliary decision-making of diet. Given a food image, existing nutrition prediction methods directly regress the nutrition content. However, due to the complex variations in food images, such as differences in viewpoint and lighting conditions, directly regressing the nutrition content faces significant challenges. The complexity of the food image data results in a high-dimensional and feature-rich input space, which poses difficulties for traditional regression models to efficiently navigate and optimize. Consequently, the direct regression paradigm usually generates inaccurate nutrition predictions. To alleviate the ambiguity challenge in the prediction progress, we propose to narrow the searchable space for the model's predictions by decomposing the direct regression into two steps: first coarsely selecting the nutrition scope and then finely refining the prediction value, forming a coarse-to-fine nutrition prediction paradigm. Although the process of coarse prediction which selects a bin from a series of scope bins can be formulated as a standard classification problem, it exhibits a distinguishable characteristic, i.e. the closer to the ground truth bin, the less punishment in the training phase. However, most of the current methods have ignored this phenomenon, thus, we specially design the linearly smoothed label in the nutrition prediction task to reveal the relative distance to the ground truth bin, leading to extraordinary improvements. Furthermore, we conduct a pair-wise comparison among all bins by extending the 1D label into 2D space and propose the structure loss to guide the bin selection process effectively. Due to the narrowed decision space, the nutrition prediction problem can be effectively optimized, and the proposed method achieves promising results on three benchmarks ECUSTFD, VFD and Nutrition5K, demonstrating the efficiency of the coarse-to-fine paradigm equipped with the linear-smoothed structure loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111xasb完成签到,获得积分10
4秒前
something完成签到,获得积分10
5秒前
10秒前
起风了完成签到 ,获得积分10
10秒前
15秒前
22秒前
现代青枫完成签到,获得积分10
23秒前
Hello应助yangon采纳,获得10
34秒前
m赤子心完成签到 ,获得积分10
44秒前
46秒前
沿途一天发布了新的文献求助10
47秒前
yangon发布了新的文献求助10
50秒前
JamesPei应助幽默的冷之采纳,获得10
53秒前
飞快的孱发布了新的文献求助10
54秒前
Gy完成签到 ,获得积分10
59秒前
幽默的冷之完成签到,获得积分10
1分钟前
1分钟前
1分钟前
347完成签到,获得积分10
1分钟前
脑洞疼应助生动的书蕾采纳,获得10
1分钟前
1分钟前
阳光刺眼完成签到 ,获得积分10
1分钟前
1分钟前
LMH发布了新的文献求助10
1分钟前
Leo963852完成签到 ,获得积分10
1分钟前
活力的妙之完成签到 ,获得积分10
1分钟前
CodeCraft应助坤坤爱文献采纳,获得10
2分钟前
2分钟前
豫章小菜花完成签到,获得积分20
2分钟前
莓烦恼发布了新的文献求助10
2分钟前
无花果应助豫章小菜花采纳,获得30
2分钟前
492357816完成签到,获得积分10
2分钟前
清爽夜雪完成签到,获得积分10
2分钟前
2分钟前
LMH完成签到,获得积分10
2分钟前
athena发布了新的文献求助10
2分钟前
2分钟前
3分钟前
xiaodaiduyan发布了新的文献求助10
3分钟前
一朵棉花糖完成签到 ,获得积分10
3分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179828
求助须知:如何正确求助?哪些是违规求助? 2830333
关于积分的说明 7976276
捐赠科研通 2491798
什么是DOI,文献DOI怎么找? 1328942
科研通“疑难数据库(出版商)”最低求助积分说明 635580
版权声明 602927