Coarse-to-Fine Nutrition Prediction

计算机科学 箱子 人工智能 模棱两可 回归 范围(计算机科学) 基本事实 过程(计算) 机器学习 数据挖掘 算法 统计 数学 操作系统 程序设计语言
作者
Binglu Wang,Tianci Bu,Zaiyi Hu,Le Yang,Yongqiang Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3651-3662
标识
DOI:10.1109/tmm.2023.3313638
摘要

Healthy dietary intake has a broad influence on the quality of life, and nutrition prediction plays a great role in the auxiliary decision-making of diet. Given a food image, existing nutrition prediction methods directly regress the nutrition content. However, due to the complex variations in food images, such as differences in viewpoint and lighting conditions, directly regressing the nutrition content faces significant challenges. The complexity of the food image data results in a high-dimensional and feature-rich input space, which poses difficulties for traditional regression models to efficiently navigate and optimize. Consequently, the direct regression paradigm usually generates inaccurate nutrition predictions. To alleviate the ambiguity challenge in the prediction progress, we propose to narrow the searchable space for the model's predictions by decomposing the direct regression into two steps: first coarsely selecting the nutrition scope and then finely refining the prediction value, forming a coarse-to-fine nutrition prediction paradigm. Although the process of coarse prediction which selects a bin from a series of scope bins can be formulated as a standard classification problem, it exhibits a distinguishable characteristic, i.e. the closer to the ground truth bin, the less punishment in the training phase. However, most of the current methods have ignored this phenomenon, thus, we specially design the linearly smoothed label in the nutrition prediction task to reveal the relative distance to the ground truth bin, leading to extraordinary improvements. Furthermore, we conduct a pair-wise comparison among all bins by extending the 1D label into 2D space and propose the structure loss to guide the bin selection process effectively. Due to the narrowed decision space, the nutrition prediction problem can be effectively optimized, and the proposed method achieves promising results on three benchmarks ECUSTFD, VFD and Nutrition5K, demonstrating the efficiency of the coarse-to-fine paradigm equipped with the linear-smoothed structure loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CMUSK发布了新的文献求助10
刚刚
len完成签到,获得积分10
刚刚
小公牛发布了新的文献求助10
刚刚
斯文伊完成签到,获得积分10
1秒前
张灿发布了新的文献求助50
1秒前
辛勤的夏云完成签到 ,获得积分10
1秒前
jw完成签到,获得积分10
1秒前
潇洒莞完成签到,获得积分10
2秒前
LMM完成签到,获得积分10
3秒前
步行街车神ahua完成签到,获得积分10
3秒前
雾见春完成签到 ,获得积分10
3秒前
澳大利亚完成签到,获得积分10
3秒前
xinxin发布了新的文献求助10
3秒前
3秒前
顾矜应助老实的寒安采纳,获得10
4秒前
文艺的雨完成签到,获得积分10
4秒前
潇洒莞发布了新的文献求助10
5秒前
LWJ完成签到 ,获得积分10
5秒前
默默的巧荷完成签到,获得积分10
5秒前
6秒前
zhangyu应助jiang采纳,获得10
6秒前
6秒前
lm完成签到,获得积分10
6秒前
爱喝酒的酒葫芦完成签到,获得积分10
7秒前
爆米花应助NatalyaF采纳,获得10
7秒前
晴空完成签到,获得积分20
8秒前
8秒前
CipherSage应助岁岁平安采纳,获得10
8秒前
褚半芹发布了新的文献求助10
9秒前
脑洞疼应助阿辉采纳,获得10
9秒前
四夕完成签到 ,获得积分10
9秒前
丘比特应助坚强打工人采纳,获得30
9秒前
9秒前
吃的完成签到,获得积分10
9秒前
照九州完成签到,获得积分10
9秒前
superspace完成签到,获得积分10
9秒前
小二郎应助Wxj246801采纳,获得10
10秒前
田様应助kk采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301