Coarse-to-Fine Nutrition Prediction

计算机科学 箱子 人工智能 模棱两可 回归 范围(计算机科学) 基本事实 过程(计算) 机器学习 数据挖掘 算法 统计 数学 操作系统 程序设计语言
作者
Binglu Wang,Tianci Bu,Zaiyi Hu,Le Yang,Yongqiang Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3651-3662
标识
DOI:10.1109/tmm.2023.3313638
摘要

Healthy dietary intake has a broad influence on the quality of life, and nutrition prediction plays a great role in the auxiliary decision-making of diet. Given a food image, existing nutrition prediction methods directly regress the nutrition content. However, due to the complex variations in food images, such as differences in viewpoint and lighting conditions, directly regressing the nutrition content faces significant challenges. The complexity of the food image data results in a high-dimensional and feature-rich input space, which poses difficulties for traditional regression models to efficiently navigate and optimize. Consequently, the direct regression paradigm usually generates inaccurate nutrition predictions. To alleviate the ambiguity challenge in the prediction progress, we propose to narrow the searchable space for the model's predictions by decomposing the direct regression into two steps: first coarsely selecting the nutrition scope and then finely refining the prediction value, forming a coarse-to-fine nutrition prediction paradigm. Although the process of coarse prediction which selects a bin from a series of scope bins can be formulated as a standard classification problem, it exhibits a distinguishable characteristic, i.e. the closer to the ground truth bin, the less punishment in the training phase. However, most of the current methods have ignored this phenomenon, thus, we specially design the linearly smoothed label in the nutrition prediction task to reveal the relative distance to the ground truth bin, leading to extraordinary improvements. Furthermore, we conduct a pair-wise comparison among all bins by extending the 1D label into 2D space and propose the structure loss to guide the bin selection process effectively. Due to the narrowed decision space, the nutrition prediction problem can be effectively optimized, and the proposed method achieves promising results on three benchmarks ECUSTFD, VFD and Nutrition5K, demonstrating the efficiency of the coarse-to-fine paradigm equipped with the linear-smoothed structure loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
腼腆的白开水完成签到 ,获得积分10
1秒前
1秒前
Jason完成签到,获得积分10
2秒前
可爱的函函应助周南采纳,获得10
3秒前
jhcraul发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
李健的粉丝团团长应助Elma采纳,获得10
6秒前
xxfsx举报开放香岚求助涉嫌违规
6秒前
lalala应助Wanfeng采纳,获得10
6秒前
7秒前
8秒前
9秒前
kytm完成签到,获得积分10
9秒前
9秒前
夜雨林凉发布了新的文献求助10
9秒前
9秒前
yfh1997发布了新的文献求助10
10秒前
科研通AI6应助开朗孤兰采纳,获得10
10秒前
MOLLY发布了新的文献求助10
11秒前
少艾发布了新的文献求助10
11秒前
li完成签到,获得积分10
12秒前
不倦应助雪山飞龙采纳,获得10
13秒前
胡民伟发布了新的文献求助10
13秒前
干净的厉完成签到,获得积分10
13秒前
xiaoju完成签到,获得积分20
14秒前
winnie完成签到,获得积分10
14秒前
Jasper应助耳冉采纳,获得10
17秒前
bkagyin应助西北采纳,获得10
18秒前
19秒前
19秒前
传奇3应助夜雨林凉采纳,获得10
19秒前
胡民伟完成签到,获得积分20
20秒前
奇奇怪怪完成签到,获得积分10
20秒前
YJY完成签到 ,获得积分10
20秒前
20秒前
冬月既止始完成签到,获得积分10
21秒前
松果发布了新的文献求助50
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312