Controlling ESIPT-based AIE effects for designing optical materials with single-component white-light emission

苯并噻唑 分子内力 聚集诱导发射 分子 光化学 猝灭(荧光) 氢键 化学 发色团 激发态 材料科学 荧光 有机化学 光学 物理 核物理学
作者
Shuai Huang,Bin Feng,Xiang Cheng,Xueyan Huang,Jipeng Ding,Kunqian Yu,Jie Dong,Wenbin Zeng
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:476: 146436-146436 被引量:9
标识
DOI:10.1016/j.cej.2023.146436
摘要

Aggregation-induced emission (AIE) molecules have gained significant importance in various fields such as biological imaging and organic light-emitting diodes. Here, we focused on exploring the process of the induction and control of AIE effects by modifying intramolecular hydrogen bonds. Firstly, inspired by the AIE characteristics of our reported amino-type excited-state intramolecular proton transfer (ESIPT)-based molecules, qualitative and quantitative relationships between the acidity of the amino group and the ESIPT process were investigated. They were successfully revealed through artificial intelligence modeling and quantum chemical calculations. Based on this, eight compounds, (2-(2′-aminophenyl) benzothiazole (1) and its derivatives), were synthesized. Then, their mechanism of structural and optical phenomena (AIE or aggregation-caused quenching (ACQ)) was further verified by quantum chemical calculations and experiments. It has been proved that multistage photochemical reactions could lead to the AIE phenomenon. Finally, the eight compounds were applied to biological imaging and white light material applications, benefiting from tunable dual-emission spectroscopic properties of amino compounds with ESIPT properties. This study provided extensive guidance on developing molecules with AIE properties and opened up new avenues for AIE-based principles, as well as single-component white-light emission optical materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光怀亦完成签到,获得积分10
1秒前
1秒前
1秒前
Hello应助IF>100采纳,获得10
1秒前
2秒前
潮湿梦完成签到,获得积分10
2秒前
shYnEss发布了新的文献求助10
2秒前
2秒前
keyan_long完成签到,获得积分10
4秒前
jz完成签到,获得积分10
4秒前
灵冰惜月完成签到,获得积分10
5秒前
深情安青应助勤劳傻姑采纳,获得10
5秒前
6秒前
Octopus完成签到,获得积分10
6秒前
458965完成签到,获得积分20
6秒前
jz发布了新的文献求助10
7秒前
又又发布了新的文献求助10
7秒前
飞跃完成签到,获得积分10
7秒前
7秒前
7秒前
CodeCraft应助戳戳采纳,获得10
8秒前
8秒前
pofeng发布了新的文献求助10
9秒前
11秒前
陶醉书琴发布了新的文献求助10
11秒前
可爱的函函应助458965采纳,获得10
11秒前
小溪溪发布了新的文献求助10
11秒前
淡定邑发布了新的文献求助10
12秒前
12秒前
深情安青应助NTY采纳,获得10
12秒前
沉默曼文完成签到,获得积分10
13秒前
白果肉蛋关注了科研通微信公众号
13秒前
yangyang发布了新的文献求助10
14秒前
CodeCraft应助lxy采纳,获得10
14秒前
lgh发布了新的文献求助20
14秒前
123发布了新的文献求助20
15秒前
阿童木完成签到,获得积分10
15秒前
鹏笑发布了新的文献求助10
15秒前
lvvyy完成签到,获得积分10
16秒前
Wxj246801发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676137
求助须知:如何正确求助?哪些是违规求助? 3230548
关于积分的说明 9791538
捐赠科研通 2941601
什么是DOI,文献DOI怎么找? 1612681
邀请新用户注册赠送积分活动 761208
科研通“疑难数据库(出版商)”最低求助积分说明 736750