Self-distillation and self-supervision for partial label learning

计算机科学 人工智能 水准点(测量) 机器学习 任务(项目管理) 蒸馏 样品(材料) 特征(语言学) 光学(聚焦) 方案(数学) 模式识别(心理学) 数据挖掘 数学 工程类 哲学 数学分析 有机化学 化学 物理 光学 系统工程 色谱法 地理 语言学 大地测量学
作者
Xiaotong Yu,Shiding Sun,Siyu Zhu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110016-110016 被引量:6
标识
DOI:10.1016/j.patcog.2023.110016
摘要

As a main branch of weakly supervised learning paradigm, partial label learning (PLL) copes with the situation where each sample corresponds to ambiguous candidate labels containing the unknown true label. The primary difficulty of PLL lies in label ambiguities, most existing researches focus on individual instance knowledge while ignore the importance of cross-sample knowledge. To circumvent this difficulty, an innovative multi-task framework is proposed in this work to integrate self-supervision and self-distillation to tackle PLL problem. Specifically, in the self-distillation task, cross-sample knowledge in the same batch is utilized to refine ensembled soft targets to supervise the distillation operation without using multiple networks. The auxiliary self-supervised task of recognizing rotation transformations of images provides more supervisory signal for feature learning. Overall, training supervision is constructed not only from the input data itself but also from other instances within the same batch. Empirical results on benchmark datasets reveal that this method is effective in learning from partially labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依然完成签到,获得积分10
刚刚
刚刚
1秒前
000发布了新的文献求助10
1秒前
bluesky发布了新的文献求助10
1秒前
孙朱珠发布了新的文献求助10
2秒前
归尘发布了新的文献求助10
2秒前
隐形曼青应助爱听歌时光采纳,获得10
2秒前
桃李不言完成签到,获得积分10
2秒前
2秒前
3秒前
张琳完成签到,获得积分10
4秒前
4秒前
guoguo发布了新的文献求助10
4秒前
5秒前
灵巧的雁易完成签到,获得积分10
5秒前
badercao完成签到,获得积分10
5秒前
Wuwuwu发布了新的文献求助10
5秒前
Re完成签到,获得积分10
5秒前
5秒前
老鱼娜娜完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
归尘发布了新的文献求助20
7秒前
行毅文完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助凶狠的蓉采纳,获得10
7秒前
RNNNLL发布了新的文献求助10
8秒前
zhfliang完成签到,获得积分10
8秒前
乐乐妈完成签到,获得积分10
8秒前
8秒前
8秒前
帅气蓝发布了新的文献求助10
8秒前
8秒前
8秒前
Bao完成签到 ,获得积分10
8秒前
rosexu完成签到,获得积分20
9秒前
等待的大炮完成签到,获得积分10
9秒前
超的爱123完成签到 ,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572