Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis

荟萃分析 医学 机器学习 均方误差 低血糖 不利影响 糖尿病 预测建模 平均绝对误差 人工智能 内科学 计算机科学 统计 数学 内分泌学
作者
Kui Liu,Linyi Li,Yifei Ma,Jun Jiang,Zhenhua Liu,Zichen Ye,Shuang Liu,Chen Pu,Changsheng Chen,Yi Wan
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e47833-e47833 被引量:9
标识
DOI:10.2196/47833
摘要

Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important.In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity.PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced.PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一站到底发布了新的文献求助10
刚刚
1秒前
2秒前
jyylrl发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
doctorbba发布了新的文献求助10
5秒前
田様应助傻傻的修洁采纳,获得10
5秒前
下文献的蜉蝣完成签到 ,获得积分10
6秒前
a1313发布了新的文献求助10
6秒前
yy发布了新的文献求助10
7秒前
7秒前
科研通AI6应助草莓采纳,获得10
8秒前
一站到底完成签到 ,获得积分10
8秒前
8秒前
8秒前
10秒前
莲花庙里吃苹果完成签到,获得积分20
13秒前
zhoushishan发布了新的文献求助10
14秒前
14秒前
14秒前
jyylrl完成签到,获得积分10
15秒前
15秒前
风清扬发布了新的文献求助30
17秒前
JamesPei应助忧伤的向日葵采纳,获得30
17秒前
善学以致用应助yy采纳,获得10
18秒前
18秒前
18秒前
如风发布了新的文献求助10
18秒前
18秒前
20秒前
20秒前
21秒前
21秒前
22秒前
23秒前
SuperYing发布了新的文献求助10
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610252
求助须知:如何正确求助?哪些是违规求助? 4694737
关于积分的说明 14884005
捐赠科研通 4721516
什么是DOI,文献DOI怎么找? 2545036
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039