Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis

荟萃分析 医学 机器学习 均方误差 低血糖 不利影响 糖尿病 预测建模 平均绝对误差 人工智能 内科学 计算机科学 统计 数学 内分泌学
作者
Kui Liu,Linyi Li,Yifei Ma,Jun Jiang,Zhenhua Liu,Zichen Ye,Shuang Liu,Chen Pu,Changsheng Chen,Yi Wan
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:11: e47833-e47833 被引量:9
标识
DOI:10.2196/47833
摘要

Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important.In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity.PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced.PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wyn完成签到,获得积分10
1秒前
1秒前
hhhhhhhhhh完成签到 ,获得积分10
1秒前
lm完成签到 ,获得积分10
1秒前
fuyuhaoy完成签到,获得积分10
1秒前
wanci应助majf采纳,获得10
1秒前
冲天小猪完成签到,获得积分10
2秒前
2秒前
章鱼哥完成签到,获得积分10
2秒前
3秒前
4秒前
悦耳寒云发布了新的文献求助10
5秒前
Chaiyuan完成签到 ,获得积分10
5秒前
5秒前
曾经青亦发布了新的文献求助10
5秒前
Aprial完成签到,获得积分10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
ziyu完成签到,获得积分10
7秒前
尹山蝶完成签到,获得积分10
8秒前
ll应助JJ采纳,获得10
8秒前
Hudson完成签到,获得积分10
8秒前
思源应助星空采纳,获得10
9秒前
kirito7完成签到,获得积分10
9秒前
典雅碧空完成签到,获得积分10
9秒前
mo莫发布了新的文献求助10
9秒前
善良酸奶完成签到 ,获得积分10
10秒前
10秒前
风清扬应助WeiBao采纳,获得10
10秒前
淡然靖柔完成签到,获得积分10
10秒前
Annnn完成签到,获得积分10
11秒前
zhen完成签到,获得积分10
12秒前
12秒前
foreverchoi完成签到,获得积分10
12秒前
还行吧完成签到 ,获得积分10
12秒前
淡定井完成签到 ,获得积分10
12秒前
穷到吃不起饭完成签到,获得积分10
12秒前
积极的邪欢完成签到,获得积分10
13秒前
13秒前
高分求助中
Nickel, Cobalt and Palladium Catalysed Infarction with Ventricular following rich structural diversity 1000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676