Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis

荟萃分析 医学 机器学习 均方误差 低血糖 不利影响 糖尿病 预测建模 平均绝对误差 人工智能 内科学 计算机科学 统计 数学 内分泌学
作者
Kui Liu,Linyi Li,Yifei Ma,Jun Jiang,Zhenhua Liu,Zichen Ye,Shuang Liu,Chen Pu,Changsheng Chen,Yi Wan
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e47833-e47833 被引量:9
标识
DOI:10.2196/47833
摘要

Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important.In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity.PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced.PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
布衣发布了新的文献求助10
1秒前
1秒前
可ke完成签到 ,获得积分10
1秒前
小样发布了新的文献求助10
1秒前
hebei应助开朗的鸵鸟采纳,获得10
2秒前
2秒前
梁岑晚发布了新的文献求助10
2秒前
2秒前
Sepvvvvirtue发布了新的文献求助10
2秒前
2秒前
3秒前
俏皮的安萱完成签到 ,获得积分10
3秒前
KKK完成签到,获得积分10
4秒前
4秒前
lemonyu发布了新的文献求助30
4秒前
4秒前
spc68应助摆烂的雨雨采纳,获得10
5秒前
脑洞疼应助LXl采纳,获得10
5秒前
6秒前
6秒前
kingnb发布了新的文献求助10
6秒前
俞晓发布了新的文献求助10
7秒前
7秒前
贵金属LiLi发布了新的文献求助10
7秒前
7秒前
花南星完成签到,获得积分10
7秒前
木木发布了新的文献求助10
7秒前
夏青完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Starvotary发布了新的文献求助20
8秒前
蒋莹萱完成签到 ,获得积分10
8秒前
8秒前
敬鱼发布了新的文献求助10
8秒前
8秒前
乐乐侠发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389