清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis

荟萃分析 医学 机器学习 均方误差 低血糖 不利影响 糖尿病 预测建模 平均绝对误差 人工智能 内科学 计算机科学 统计 数学 内分泌学
作者
Kui Liu,Linyi Li,Yifei Ma,Jun Jiang,Zhenhua Liu,Zichen Ye,Shuang Liu,Chen Pu,Changsheng Chen,Yi Wan
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e47833-e47833 被引量:9
标识
DOI:10.2196/47833
摘要

Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important.In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity.PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced.PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenlc971125完成签到 ,获得积分10
12秒前
外向的芒果完成签到 ,获得积分10
18秒前
上官若男应助al采纳,获得10
28秒前
自然代亦完成签到 ,获得积分10
32秒前
1分钟前
al发布了新的文献求助10
1分钟前
al完成签到 ,获得积分0
1分钟前
炎炎夏无声完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
苗笑卉发布了新的文献求助50
1分钟前
NexusExplorer应助苗笑卉采纳,获得10
2分钟前
苗笑卉完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
2分钟前
merrylake完成签到 ,获得积分10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
3分钟前
Jarvis完成签到,获得积分10
3分钟前
3分钟前
lingling完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得20
4分钟前
kmzzy完成签到,获得积分10
4分钟前
宫戚戚完成签到 ,获得积分10
5分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
JT关闭了JT文献求助
5分钟前
乖咪甜球球完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
贰壹完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450206
求助须知:如何正确求助?哪些是违规求助? 4558052
关于积分的说明 14265378
捐赠科研通 4481452
什么是DOI,文献DOI怎么找? 2454860
邀请新用户注册赠送积分活动 1445610
关于科研通互助平台的介绍 1421596