亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis

荟萃分析 医学 机器学习 均方误差 低血糖 不利影响 糖尿病 预测建模 平均绝对误差 人工智能 内科学 计算机科学 统计 数学 内分泌学
作者
Kui Liu,Linyi Li,Yifei Ma,Jun Jiang,Zhenhua Liu,Zichen Ye,Shuang Liu,Chen Pu,Changsheng Chen,Yi Wan
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e47833-e47833 被引量:9
标识
DOI:10.2196/47833
摘要

Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important.In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity.PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced.PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
潮人完成签到 ,获得积分10
41秒前
44秒前
康康舞曲完成签到 ,获得积分10
49秒前
靳言发布了新的文献求助10
56秒前
634301059完成签到 ,获得积分10
59秒前
英姑应助靳言采纳,获得10
1分钟前
winter1127发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
斯文的苡完成签到,获得积分10
1分钟前
1分钟前
Owen应助淡淡无春采纳,获得30
1分钟前
1分钟前
多边棱发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
隐形曼青应助andrele采纳,获得10
2分钟前
3分钟前
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
热情依白应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
科目三应助andrele采纳,获得10
3分钟前
生动思萱发布了新的文献求助10
3分钟前
生动思萱关注了科研通微信公众号
4分钟前
4分钟前
所所应助andrele采纳,获得10
5分钟前
5分钟前
靳言发布了新的文献求助10
5分钟前
5分钟前
我是老大应助andrele采纳,获得10
6分钟前
锅包肉完成签到 ,获得积分10
6分钟前
靳言完成签到,获得积分20
6分钟前
卡卡光波完成签到,获得积分10
6分钟前
英姑应助靳言采纳,获得10
6分钟前
爱静静完成签到,获得积分0
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307414
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500245
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461