Comparison of two independent populations of compositional data with positive correlations among components using a nested dirichlet distribution.

统计 数学 Dirichlet分布 嵌套集模型 计量经济学 计算机科学 数据挖掘 数学分析 关系数据库 边值问题
作者
Jacob Turner,Bianca Luedeker,Monnie McGee
出处
期刊:Psychological Methods [American Psychological Association]
标识
DOI:10.1037/met0000702
摘要

Compositional data are multivariate data made up of components that sum to a fixed value. Often the data are presented as proportions of a whole, where the value of each component is constrained to be between 0 and 1 and the sum of the components is 1. There are many applications in psychology and other disciplines that yield compositional data sets including Morris water maze experiments, psychological well-being scores, analysis of daily physical activity times, and components of household expenditures. Statistical methods exist for compositional data and typically consist of two approaches. The first is to use transformation strategies, such as log ratios, which can lead to results that are challenging to interpret. The second involves using an appropriate distribution, such as the Dirichlet distribution, that captures the key characteristics of compositional data, and allows for ready interpretation of downstream analysis. Unfortunately, the Dirichlet distribution has constraints on variance and correlation that render it inappropriate for some applications. As a result, practicing researchers will often resort to standard two-sample t test or analysis of variance models for each variable in the composition to detect differences in means. We show that a recently published method using the Dirichlet distribution can drastically inflate Type I error rates, and we introduce a global two-sample test to detect differences in mean proportion of components for two independent groups where both groups are from either a Dirichlet or a more flexible nested Dirichlet distribution. We also derive confidence interval formulas for individual components for post hoc testing and further interpretation of results. We illustrate the utility of our methods using a recent Morris water maze experiment and human activity data. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
Samamms发布了新的文献求助10
2秒前
1111完成签到 ,获得积分10
3秒前
舒心的饼干完成签到 ,获得积分10
4秒前
xyzhang完成签到,获得积分10
4秒前
王钰淼发布了新的文献求助10
5秒前
李爱国应助Yanqi采纳,获得10
5秒前
8R60d8应助ChenChen采纳,获得80
6秒前
我是站长才怪应助所以Sun采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
猫咪老师应助科研通管家采纳,获得30
7秒前
Akim应助科研通管家采纳,获得10
7秒前
PageSeo2应助科研通管家采纳,获得20
7秒前
搜集达人应助科研通管家采纳,获得30
7秒前
沈书应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得10
7秒前
猫咪老师应助科研通管家采纳,获得30
7秒前
李健应助科研通管家采纳,获得10
8秒前
PageSeo2应助科研通管家采纳,获得20
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
coco应助科研通管家采纳,获得10
8秒前
Zbmd完成签到,获得积分10
8秒前
8秒前
科研通AI5应助奇妙猪猪侠采纳,获得10
8秒前
付志敏完成签到 ,获得积分10
9秒前
cdercder应助婵宝宝采纳,获得10
9秒前
10秒前
......发布了新的文献求助10
12秒前
12秒前
猪猪hero发布了新的文献求助10
13秒前
13秒前
小马甲应助Samamms采纳,获得30
13秒前
xianyu完成签到,获得积分0
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774420
求助须知:如何正确求助?哪些是违规求助? 3320128
关于积分的说明 10198570
捐赠科研通 3034739
什么是DOI,文献DOI怎么找? 1665166
邀请新用户注册赠送积分活动 796697
科研通“疑难数据库(出版商)”最低求助积分说明 757549