A Systematic Review of Spiking Neural Networks and Their Applications

计算机科学 人工神经网络 人工智能
作者
Ankur Singhal,Ishta Rani,Divya Singh,Bikram Kumar,Vinay Bhatia,Shubhi Gupta
出处
期刊:Advances in computational intelligence and robotics book series 卷期号:: 43-60
标识
DOI:10.4018/979-8-3693-6303-4.ch003
摘要

These days, there is increasing curiosity regarding the topic of spiking neural networks (SNNs). Compared to artificial neural networks (ANNs), which are the subsequent equivalents, they bear a greater resemblance to the real neural networks found in the brain. SNNs are based on events such as neuromorphic factors; hardware based on SNNs may be less energy-intensive than ANNs. Since the energy usage would be far lower than that of typical deep learning models housed in the cloud today, this could result in a significant reduction in maintenance costs for neural network models. Such gear is still not readily accessible, however. This chapter presents a Systematic Review of Spiking Neural Networks and Their Applications. This study examines the benefits and drawbacks of various neural model types, coding techniques, methods for learning, and Neuromorphic platforms for computing. Based on these analyses, some anticipated developments are suggested, including balancing biological imitation and computing costs for neuron theories, the process of compounding coding techniques, unsupervised algorithms for learning in SNN, and digital-analog computation systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12356完成签到,获得积分10
2秒前
杨鹏发布了新的文献求助10
2秒前
谷雨完成签到,获得积分10
3秒前
CodeCraft应助李知恩采纳,获得10
3秒前
坎坎坷坷完成签到,获得积分20
3秒前
4秒前
天天快乐应助无限的毛豆采纳,获得10
5秒前
共享精神应助geold采纳,获得10
6秒前
6秒前
刘欢发布了新的文献求助10
7秒前
完美芹发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
Pothos应助杰尼龟采纳,获得20
9秒前
WANG发布了新的文献求助10
10秒前
10秒前
蕾蕾发布了新的文献求助10
10秒前
Carrie发布了新的文献求助10
11秒前
刘shuchang发布了新的文献求助10
11秒前
冰coke完成签到,获得积分10
12秒前
小小虾发布了新的文献求助10
14秒前
14秒前
俏皮小小发布了新的文献求助10
14秒前
peanut发布了新的文献求助10
15秒前
15秒前
hhhhhhhhhh完成签到 ,获得积分10
17秒前
17秒前
lemon完成签到,获得积分10
18秒前
爆米花应助俏皮小小采纳,获得10
20秒前
23秒前
lmm完成签到,获得积分10
24秒前
聪明的手链完成签到,获得积分10
25秒前
25秒前
Dog驳回了脑洞疼应助
26秒前
小洋甘完成签到,获得积分10
26秒前
科研通AI5应助蕾蕾采纳,获得10
27秒前
Nia发布了新的文献求助10
27秒前
深情安青应助we采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756733
求助须知:如何正确求助?哪些是违规求助? 3300097
关于积分的说明 10112328
捐赠科研通 3014521
什么是DOI,文献DOI怎么找? 1655605
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546